Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2317772121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38820000

RESUMO

Stopping power is the rate at which a material absorbs the kinetic energy of a charged particle passing through it-one of many properties needed over a wide range of thermodynamic conditions in modeling inertial fusion implosions. First-principles stopping calculations are classically challenging because they involve the dynamics of large electronic systems far from equilibrium, with accuracies that are particularly difficult to constrain and assess in the warm-dense conditions preceding ignition. Here, we describe a protocol for using a fault-tolerant quantum computer to calculate stopping power from a first-quantized representation of the electrons and projectile. Our approach builds upon the electronic structure block encodings of Su et al. [PRX Quant. 2, 040332 (2021)], adapting and optimizing those algorithms to estimate observables of interest from the non-Born-Oppenheimer dynamics of multiple particle species at finite temperature. We also work out the constant factors associated with an implementation of a high-order Trotter approach to simulating a grid representation of these systems. Ultimately, we report logical qubit requirements and leading-order Toffoli costs for computing the stopping power of various projectile/target combinations relevant to interpreting and designing inertial fusion experiments. We estimate that scientifically interesting and classically intractable stopping power calculations can be quantum simulated with roughly the same number of logical qubits and about one hundred times more Toffoli gates than is required for state-of-the-art quantum simulations of industrially relevant molecules such as FeMoco or P450.

2.
Phys Rev Lett ; 124(3): 030501, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32031843

RESUMO

We consider the precision Δφ with which the parameter φ, appearing in the unitary map U_{φ}=e^{iφΛ}, acting on some type of probe system, can be estimated when there is a finite amount of prior information about φ. We show that, if U_{φ} acts n times in total, then, asymptotically in n, there is a tight lower bound Δφ≥π/[n(λ_{+}-λ_{-})], where λ_{+}, λ_{-} are the extreme eigenvalues of the generator Λ. This is greater by a factor of π than the conventional Heisenberg limit, derived from the properties of the quantum Fisher information. That is, the conventional bound is never saturable. Our result makes no assumptions on the measurement protocol and is relevant not only in the noiseless case but also if noise can be eliminated using quantum error correction techniques.

3.
Phys Rev Lett ; 122(2): 020502, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720321

RESUMO

Black-box quantum state preparation is an important subroutine in many quantum algorithms. The standard approach requires the quantum computer to do arithmetic, which is a key contributor to the complexity. Here we present a new algorithm that avoids arithmetic. We thereby reduce the number of gates by a factor of 286-374 over the best prior work for realistic precision; the improvement factor increases with the precision. As quantum state preparation is a crucial subroutine in many approaches to simulating physics on a quantum computer, our new method brings useful quantum simulation closer to reality.

4.
Phys Rev Lett ; 114(9): 090502, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793789

RESUMO

We describe a simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. Our method can simulate the time evolution of a wide variety of physical systems. As in another recent algorithm, the cost of our method depends only logarithmically on the inverse of the desired precision, which is optimal. However, we simplify the algorithm and its analysis by using a method for implementing linear combinations of unitary operations together with a robust form of oblivious amplitude amplification.

5.
Phys Rev Lett ; 111(11): 113601, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074085

RESUMO

The ultimate limits to estimating a fluctuating phase imposed on an optical beam can be found using the recently derived continuous quantum Cramér-Rao bound. For Gaussian stationary statistics, and a phase spectrum scaling asymptotically as ω(-p) with p>1, the minimum mean-square error in any (single-time) phase estimate scales as N(-2(p-1)/(p+1)), where N is the photon flux. This gives the usual Heisenberg limit for a constant phase (as the limit p→∞) and provides a stochastic Heisenberg limit for fluctuating phases. For p=2 (Brownian motion), this limit can be attained by phase tracking.

6.
Phys Rev Lett ; 111(13): 130504, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116760

RESUMO

Inspired by the Solovay-Kitaev decomposition for approximating unitary operations as a sequence of operations selected from a universal quantum computing gate set, we introduce a method for approximating any single-qubit channel using single-qubit gates and the controlled-not (cnot). Our approach uses the decomposition of the single-qubit channel into a convex combination of "quasiextreme" channels. Previous techniques for simulating general single-qubit channels would require as many as 20 cnot gates, whereas ours only needs one, bringing it within the range of current experiments.

7.
Nat Commun ; 14(1): 4058, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429883

RESUMO

Quantum algorithms for simulating electronic ground states are slower than popular classical mean-field algorithms such as Hartree-Fock and density functional theory but offer higher accuracy. Accordingly, quantum computers have been predominantly regarded as competitors to only the most accurate and costly classical methods for treating electron correlation. However, here we tighten bounds showing that certain first-quantized quantum algorithms enable exact time evolution of electronic systems with exponentially less space and polynomially fewer operations in basis set size than conventional real-time time-dependent Hartree-Fock and density functional theory. Although the need to sample observables in the quantum algorithm reduces the speedup, we show that one can estimate all elements of the k-particle reduced density matrix with a number of samples scaling only polylogarithmically in basis set size. We also introduce a more efficient quantum algorithm for first-quantized mean-field state preparation that is likely cheaper than the cost of time evolution. We conclude that quantum speedup is most pronounced for finite-temperature simulations and suggest several practically important electron dynamics problems with potential quantum advantage.

8.
Nat Phys ; 19(3): 351-357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36942094

RESUMO

Entanglement is a fundamental feature of quantum mechanics and holds great promise for enhancing metrology and communications. Much of the focus of quantum metrology so far has been on generating highly entangled quantum states that offer better sensitivity, per resource, than what can be achieved classically. However, to reach the ultimate limits in multi-parameter quantum metrology and quantum information processing tasks, collective measurements, which generate entanglement between multiple copies of the quantum state, are necessary. Here, we experimentally demonstrate theoretically optimal single- and two-copy collective measurements for simultaneously estimating two non-commuting qubit rotations. This allows us to implement quantum-enhanced sensing, for which the metrological gain persists for high levels of decoherence, and to draw fundamental insights about the interpretation of the uncertainty principle. We implement our optimal measurements on superconducting, trapped-ion and photonic systems, providing an indication of how future quantum-enhanced sensing networks may look.

9.
Nat Commun ; 9(1): 4606, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389924

RESUMO

The use of quantum resources can provide measurement precision beyond the shot-noise limit (SNL). The task of ab initio optical phase measurement-the estimation of a completely unknown phase-has been experimentally demonstrated with precision beyond the SNL, and even scaling like the ultimate bound, the Heisenberg limit (HL), but with an overhead factor. However, existing approaches have not been able-even in principle-to achieve the best possible precision, saturating the HL exactly. Here we demonstrate a scheme to achieve true HL phase measurement, using a combination of three techniques: entanglement, multiple samplings of the phase shift, and adaptive measurement. Our experimental demonstration of the scheme uses two photonic qubits, one double passed, so that, for a successful coincidence detection, the number of photon-passes is N = 3. We achieve a precision that is within 4% of the HL. This scheme can be extended to higher N and other physical systems.

10.
Sci Rep ; 4: 6955, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25378182

RESUMO

Quantum correlations can be stronger than anything achieved by classical systems, yet they are not reaching the limit imposed by relativity. The principle of information causality offers a possible explanation for why the world is quantum and why there appear to be no even stronger correlations. Generalizing the no-signaling condition it suggests that the amount of accessible information must not be larger than the amount of transmitted information. Here we study this principle experimentally in the classical, quantum and post-quantum regimes. We simulate correlations that are stronger than allowed by quantum mechanics by exploiting the effect of polarization-dependent loss in a photonic Bell-test experiment. Our method also applies to other fundamental principles and our results highlight the special importance of anisotropic regions of the no-signalling polytope in the study of fundamental principles.

11.
Science ; 337(6101): 1514-7, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22997332

RESUMO

Tracking a randomly varying optical phase is a key task in metrology, with applications in optical communication. The best precision for optical-phase tracking has until now been limited by the quantum vacuum fluctuations of coherent light. Here, we surpass this coherent-state limit by using a continuous-wave beam in a phase-squeezed quantum state. Unlike in previous squeezing-enhanced metrology, restricted to phases with very small variation, the best tracking precision (for a fixed light intensity) is achieved for a finite degree of squeezing because of Heisenberg's uncertainty principle. By optimizing the squeezing, we track the phase with a mean square error 15 ± 4% below the coherent-state limit.

12.
Opt Lett ; 31(1): 107-9, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16419893

RESUMO

We show how to convert between partially coherent superpositions of a single photon with the vacuum by using linear optics and postselection based on homodyne measurements. We introduce a generalized quantum efficiency for such states and show that any conversion that decreases this quantity is possible. We also prove that our scheme is optimal by showing that no linear optical scheme with generalized conditional measurements, and with one single-rail qubit input, can improve the generalized efficiency.

13.
Phys Rev Lett ; 90(5): 057901, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12633398

RESUMO

We prove that it is possible to remotely prepare an ensemble of noncommuting mixed states using communication equal to the Holevo information for this ensemble. This remote preparation scheme may be used to convert between different ensembles of mixed states in an asymptotically lossless way, analogous to concentration and dilution for entanglement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA