Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Physiol ; 602(8): 1733-1757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493320

RESUMO

Differentiating between auditory signals of various emotional significance plays a crucial role in an individual's ability to thrive and excel in social interactions and in survival. Multiple approaches, including anatomical studies, electrophysiological investigations, imaging techniques, optogenetics and chemogenetics, have confirmed that the auditory cortex (AC) impacts fear-related behaviours driven by auditory stimuli by conveying auditory information to the lateral amygdala (LA) through long-range excitatory glutamatergic and GABAergic connections. In addition, the LA provides glutamatergic projections to the AC which are important to fear memory expression and are modified by associative fear learning. Here we test the hypothesis that the LA also sends long-range direct inhibitory inputs to the cortex. To address this fundamental question, we used anatomical and electrophysiological approaches, allowing us to directly assess the nature of GABAergic inputs from the LA to the AC in the mouse. Our findings elucidate the existence of a long-range inhibitory pathway from the LA to the AC (LAC) via parvalbumin-expressing (LAC-Parv) and somatostatin-expressing (LAC-SOM) neurons. This research identifies distinct electrophysiological properties for genetically defined long-range GABAergic neurons involved in the communication between the LA and the cortex (LAC-Parv inhibitory projections → AC neurons; LAC-Som inhibitory projections → AC neurons) within the lateral amygdala cortical network. KEY POINTS: The mouse auditory cortex receives inputs from the lateral amygdala. Retrograde viral tracing techniques allowed us to identify two previously undescribed lateral amygdala to auditory cortex (LAC) GABAergic projecting neurons. Extensive electrophysiological, morphological and anatomical characterization of LAC neurons is provided here, demonstrating key differences in the three populations. This study paves the way for a better understanding of the growing complexity of the cortico-amygdala-cortico circuit.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/fisiologia , Tonsila do Cerebelo/fisiologia , Neurônios GABAérgicos/fisiologia , Parvalbuminas/metabolismo
2.
J Neurosci ; 42(8): 1383-1405, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34983816

RESUMO

In sensory cortices, the information flow has been thought to be processed vertically across cortical layers, with layer 4 being the major thalamo-recipient which relays thalamic signals to layer 2/3, which in turn transmits thalamic information to layer 5 and 6 to then leave the cortex to reach subcortical and cortical long-range structures. Although several exceptions to this model have been described, neurons in layer 4 are still considered to establish only local (i.e., interlaminar and short-range) connections. Here, taking advantage of anatomic, electrophysiological, and optogenetic techniques, we describe, for the first time, a long-range corticostriatal class of pyramidal neurons in layer 4 (CS-L4) of the mouse auditory cortex that receive direct thalamic inputs. The CS-L4 neurons are embedded in a feedforward inhibitory circuit involving local parvalbumin neurons and establish connections in the posterior striatum in yet another feedforward inhibitory thalamo→cortico(L4)→striatal circuit which potentially contributes in controlling control the output of striatal spiny projection neurons.SIGNIFICANCE STATEMENT The assumption has been that layer 4 neurons are the main thalamic recipient layer, projecting to the upper cortical layer 2/3. However, no study has revealed a detailed understanding of the circuit mechanisms by which layer 4 sends a projection to a subcortical structure, such as the striatum, and differentially innervate the spiny projection neurons (SPNs) and intrastriatal parvalbumin-expressing neurons. For the first time, our results demonstrate that the auditory cortex projects to the posterior part of the dorsal striatum via pyramidal neurons located in layer 4 (CS-L4 neurons). Here we propose a new wiring diagram that implemented the old one, in which layer 4 is not only involved in the transfer of thalamic input to the upper layer 2/3, but can also exert a direct top-down control, bypassing intracortical processing of subcortical structures, such as the posterior part of the dorsal striatum. This poses a new conceptual cell element (CS-L4 neurons) for experimental and theoretical work of the cortical function.


Assuntos
Córtex Auditivo , Parvalbuminas , Animais , Córtex Auditivo/fisiologia , Corpo Estriado/fisiologia , Camundongos , Parvalbuminas/metabolismo , Percepção , Tálamo/fisiologia
3.
J Neurosci ; 39(43): 8424-8438, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31511429

RESUMO

Discriminating between auditory signals of different affective value is critical for the survival and success of social interaction of an individual. Anatomical, electrophysiological, imaging, and optogenetics approaches have established that the auditory cortex (AC) by providing auditory information to the lateral amygdala (LA) via long-range excitatory glutamatergic projections has an impact on sound-driven aversive/fear behavior. Here we test the hypothesis that the LA also receives GABAergic projections from the cortex. We addressed this fundamental question by taking advantage of optogenetics, anatomical, and electrophysiology approaches and directly examining the functional effects of cortical GABAergic inputs to LA neurons of the mouse (male/female) AC. We found that the cortex, via cortico-lateral-amygdala somatostatin neurons (CLA-SOM), has a direct inhibitory influence on the output of the LA principal neurons. Our results define a CLA long-range inhibitory circuit (CLA-SOM inhibitory projections → LA principal neurons) underlying the control of spike timing/generation in LA and LA-AC projecting neurons, and attributes a specific function to a genetically defined type of cortical long-range GABAergic neurons in CLA communication.SIGNIFICANCE STATEMENT It is very well established that cortical auditory inputs to the lateral amygdala are exclusively excitatory and that cortico-amygdala neuronal activity has been shown to be involved in sound-driven aversive/fear behavior. Here, for the first time, we show that the lateral amygdala receives long-range GABAergic projection from the auditory cortex and these form direct monosynaptic inhibitory connections onto lateral amygdala principal neurons. Our results define a cellular basis for direct inhibitory communication from auditory cortex to the lateral amygdala, suggesting that the timing and ratio of excitation and inhibition, two opposing forces in the mammalian cerebral cortex, can dynamically affect the output of the lateral amygdala, providing a general mechanism for fear/aversive behavior driven by auditory stimuli.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Neurônios/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Córtex Auditivo/metabolismo , Vias Auditivas/metabolismo , Medo/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/metabolismo , Somatostatina/metabolismo
4.
J Neurosci ; 39(27): 5299-5310, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31061091

RESUMO

Mutations in the synaptic scaffolding protein SHANK3 are a major cause of autism and are associated with prominent intellectual and language deficits. However, the neural mechanisms whereby SHANK3 deficiency affects higher-order socio-communicative functions remain unclear. Using high-resolution functional and structural MRI in adult male mice, here we show that loss of Shank3 (Shank3B-/-) results in disrupted local and long-range prefrontal and frontostriatal functional connectivity. We document that prefrontal hypoconnectivity is associated with reduced short-range cortical projections density, and reduced gray matter volume. Finally, we show that prefrontal disconnectivity is predictive of social communication deficits, as assessed with ultrasound vocalization recordings. Collectively, our results reveal a critical role of SHANK3 in the development of prefrontal anatomy and function, and suggest that SHANK3 deficiency may predispose to intellectual disability and socio-communicative impairments via dysregulation of higher-order cortical connectivity.SIGNIFICANCE STATEMENT Mutations in the synaptic scaffolding protein SHANK3 are commonly associated with autism, intellectual, and language deficits. Previous research has linked SHANK3 deficiency to basal ganglia dysfunction, motor stereotypies, and social deficits. However, the neural mechanism whereby Shank3 gene mutations affects cortical functional connectivity and higher-order socio-communicative functions remain unclear. Here we show that loss of SHANK3 in mice results in largely disrupted functional connectivity and abnormal gray matter anatomy in prefrontal areas. We also show that prefrontal connectivity disruption is tightly linked to socio-communicative deficits. Our findings suggest that SHANK3 is a critical orchestrator of frontocortical function, and that disrupted connectivity of prefrontal areas may underpin socio-communicative impairments observed in SHANK3 mutation carriers.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas do Tecido Nervoso/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Vocalização Animal/fisiologia , Animais , Mapeamento Encefálico , Modelos Animais de Doenças , Predisposição Genética para Doença , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/patologia , Comportamento Social
5.
Brain ; 141(7): 2055-2065, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722793

RESUMO

Human genetic studies are rapidly identifying variants that increase risk for neurodevelopmental disorders. However, it remains unclear how specific mutations impact brain function and contribute to neuropsychiatric risk. Chromosome 16p11.2 deletion is one of the most common copy number variations in autism and related neurodevelopmental disorders. Using resting state functional MRI data from the Simons Variation in Individuals Project (VIP) database, we show that 16p11.2 deletion carriers exhibit impaired prefrontal connectivity, resulting in weaker long-range functional coupling with temporal-parietal regions. These functional changes are associated with socio-cognitive impairments. We also document that a mouse with the same genetic deficiency exhibits similarly diminished prefrontal connectivity, together with thalamo-prefrontal miswiring and reduced long-range functional synchronization. These results reveal a mechanistic link between specific genetic risk for neurodevelopmental disorders and long-range functional coupling, and suggest that deletion in 16p11.2 may lead to impaired socio-cognitive function via dysregulation of prefrontal connectivity.


Assuntos
Transtorno Autístico/genética , Transtornos Cromossômicos/genética , Deficiência Intelectual/genética , Rede Nervosa/fisiologia , Adolescente , Animais , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Criança , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 16/genética , Cognição/fisiologia , Disfunção Cognitiva/complicações , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Humanos , Deficiência Intelectual/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiopatologia
6.
Cereb Cortex ; 28(4): 1141-1153, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28184409

RESUMO

Functional connectivity aberrancies, as measured with resting-state functional magnetic resonance imaging (rsfMRI), have been consistently observed in the brain of autism spectrum disorders (ASD) patients. However, the genetic and neurobiological underpinnings of these findings remain unclear. Homozygous mutations in contactin associated protein-like 2 (CNTNAP2), a neurexin-related cell-adhesion protein, are strongly linked to autism and epilepsy. Here we used rsfMRI to show that homozygous mice lacking Cntnap2 exhibit reduced long-range and local functional connectivity in prefrontal and midline brain "connectivity hubs." Long-range rsfMRI connectivity impairments affected heteromodal cortical regions and were prominent between fronto-posterior components of the mouse default-mode network, an effect that was associated with reduced social investigation, a core "autism trait" in mice. Notably, viral tracing revealed reduced frequency of prefrontal-projecting neural clusters in the cingulate cortex of Cntnap2-/- mutants, suggesting a possible contribution of defective mesoscale axonal wiring to the observed functional impairments. Macroscale cortico-cortical white-matter organization appeared to be otherwise preserved in these animals. These findings reveal a key contribution of ASD-associated gene CNTNAP2 in modulating macroscale functional connectivity, and suggest that homozygous loss-of-function mutations in this gene may predispose to neurodevelopmental disorders and autism through a selective dysregulation of connectivity in integrative prefrontal areas.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/diagnóstico por imagem , Substância Branca/fisiopatologia , Animais , Transtorno Autístico/psicologia , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Feminino , Processamento de Imagem Assistida por Computador , Relações Interpessoais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Oxigênio/sangue , Transdução Genética , Substância Branca/diagnóstico por imagem , Proteína Vermelha Fluorescente
7.
Front Neural Circuits ; 15: 714780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366798

RESUMO

Anatomical and physiological studies have described the cortex as a six-layer structure that receives, elaborates, and sends out information exclusively as excitatory output to cortical and subcortical regions. This concept has increasingly been challenged by several anatomical and functional studies that showed that direct inhibitory cortical outputs are also a common feature of the sensory and motor cortices. Similar to their excitatory counterparts, subsets of Somatostatin- and Parvalbumin-expressing neurons have been shown to innervate distal targets like the sensory and motor striatum and the contralateral cortex. However, no evidence of long-range VIP-expressing neurons, the third major class of GABAergic cortical inhibitory neurons, has been shown in such cortical regions. Here, using anatomical anterograde and retrograde viral tracing, we tested the hypothesis that VIP-expressing neurons of the mouse auditory and motor cortices can also send long-range projections to cortical and subcortical areas. We were able to demonstrate, for the first time, that VIP-expressing neurons of the auditory cortex can reach not only the contralateral auditory cortex and the ipsilateral striatum and amygdala, as shown for Somatostatin- and Parvalbumin-expressing long-range neurons, but also the medial geniculate body and both superior and inferior colliculus. We also demonstrate that VIP-expressing neurons of the motor cortex send long-range GABAergic projections to the dorsal striatum and contralateral cortex. Because of its presence in two such disparate cortical areas, this would suggest that the long-range VIP projection is likely a general feature of the cortex's network.


Assuntos
Córtex Auditivo/metabolismo , Vias Auditivas/metabolismo , Neurônios GABAérgicos/metabolismo , Córtex Motor/fisiologia , Peptídeo Intestinal Vasoativo/biossíntese , Animais , Córtex Auditivo/química , Vias Auditivas/química , Feminino , Neurônios GABAérgicos/química , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
8.
Nat Commun ; 12(1): 6084, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667149

RESUMO

Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism.


Assuntos
Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Sinapses/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Criança , Feminino , Haploinsuficiência , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/genética , Serina-Treonina Quinases TOR/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
9.
Front Neural Circuits ; 14: 45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792912

RESUMO

Previous studies have shown that cortico-striatal pathways link auditory signals to action-selection and reward-learning behavior through excitatory projections. Only recently it has been demonstrated that long-range GABAergic cortico-striatal somatostatin-expressing neurons in the auditory cortex project to the dorsal striatum, and functionally inhibit the main projecting neuronal population, the spiny projecting neuron. Here we tested the hypothesis that parvalbumin-expressing neurons of the auditory cortex can also send long-range projections to the auditory striatum. To address this fundamental question, we took advantage of viral and non-viral anatomical tracing approaches to identify cortico-striatal parvalbumin neurons (CS-Parv inhibitory projections → auditory striatum). Here, we describe their anatomical distribution in the auditory cortex and determine the anatomical and electrophysiological properties of layer 5 CS-Parv neurons. We also analyzed their characteristic voltage-dependent membrane potential gamma oscillation, showing that intrinsic membrane mechanisms generate them. The inherent membrane mechanisms can also trigger intermittent and irregular bursts (stuttering) of the action potential in response to steps of depolarizing current pulses.


Assuntos
Córtex Auditivo/citologia , Corpo Estriado/citologia , Neurônios GABAérgicos/citologia , Animais , Córtex Auditivo/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Camundongos , Inibição Neural , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Parvalbuminas/metabolismo
10.
Neuron ; 98(4): 801-816.e7, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29706583

RESUMO

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.


Assuntos
Corpo Estriado/metabolismo , Plasticidade Neuronal/genética , Receptores 5-HT4 de Serotonina/genética , Serotonina/metabolismo , Tálamo/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Depressão Sináptica de Longo Prazo , Camundongos , Camundongos Transgênicos , Vias Neurais , Plasticidade Neuronal/efeitos dos fármacos , Optogenética , Piperidinas/farmacologia , Propano/análogos & derivados , Propano/farmacologia , Antagonistas do Receptor 5-HT4 de Serotonina/farmacologia , Sulfonamidas/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tálamo/citologia , Tálamo/efeitos dos fármacos
11.
Sci Rep ; 7: 40046, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071745

RESUMO

Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.


Assuntos
Plásticos Biodegradáveis/química , Portadores de Fármacos/química , Impressão Molecular/métodos , Nanopartículas/química , Acrilatos/química , Animais , Biotransformação , Bovinos , Células HeLa , Humanos , Ácido Láctico/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ligação Proteica , Soroalbumina Bovina
12.
Front Cell Neurosci ; 11: 202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769763

RESUMO

Serotonin (5-HT)-synthetizing neurons, which are confined in the raphe nuclei of the rhombencephalon, provide a pervasive innervation of the central nervous system (CNS) and are involved in the modulation of a plethora of functions in both developing and adult brain. Classical studies have described the post-natal development of serotonergic axons as a linear process of terminal field innervation. However, technical limitations have hampered a fine morphological characterization. With the advent of genetic mouse models, the possibility to label specific neuronal populations allowed the rigorous measurement of their axonal morphological features as well as their developmental dynamics. Here, we used the Tph2GFP knock-in mouse line, in which GFP expression allows punctual identification of serotonergic neurons and axons, for confocal microscope imaging and we performed 3-dimensional reconstruction in order to morphologically characterize the development of serotonergic fibers in specified brain targets from birth to adulthood. Our analysis highlighted region-specific developmental patterns of serotonergic fiber density ranging from a linear and progressive colonization of the target (Caudate/Putamen, Basolateral Amygdala, Geniculate Nucleus and Substantia Nigra) to a transient increase in fiber density (medial Prefrontal Cortex, Globus Pallidus, Somatosensory Cortex and Hippocampus) occurring with a region-specific timing. Despite a common pattern of early post-natal morphological maturation in which a progressive rearrangement from a dot-shaped to a regular and smooth fiber morphology was observed, starting from post-natal day 28 serotonergic fibers acquire the region specific morphological features present in the adult. In conclusion, we provided novel, target-specific insights on the morphology and temporal dynamics of the developing serotonergic fibers.

13.
Sci Rep ; 7(1): 10563, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874824

RESUMO

Neuronal physiology requires activity-driven protein translation, a process in which translation initiation factors are key players. We focus on eukaryotic initiation factor 4B (eIF4B), a regulator of protein translation, whose function in neurons is undetermined. We show that neuronal activity affects eIF4B phosphorylation and identify Ser504 as a phosphorylation site regulated by casein kinases and sensitive to the activation of metabotropic glutamate receptors. Ser504 phosphorylation increases eIF4B recruitment to the pre-initiation complex and influences eIF4B localization at synapses. Moreover, Ser504 phosphorylation modulates the translation of protein kinase Mζ. Therefore, by sensing synaptic activity, eIF4B could adjust translation to neuronal needs, promoting adaptive changes in synaptic plasticity. We also show that Ser504 phosphorylation is increased in vivo in a rat model of epilepsy during epileptogenesis i.e. when translation drives maladaptive synaptic changes. We propose eIF4B as a mediator between neuronal activity and translation, with relevance in the control of synaptic plasticity.


Assuntos
Epilepsia/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Potenciais Sinápticos , Animais , Caseína Quinases/metabolismo , Células Cultivadas , Fatores de Iniciação em Eucariotos/química , Células HEK293 , Humanos , Masculino , Plasticidade Neuronal , Fosforilação , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/metabolismo , Serina/metabolismo , Sinapses/metabolismo
14.
Brain Struct Funct ; 221(2): 941-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25445840

RESUMO

Agenesis of the corpus callosum (AgCC) is a congenital condition associated with wide-ranging emotional and social impairments often overlapping with the diagnostic criteria for autism. Mapping functional connectivity in the acallosal brain can help identify neural correlates of the deficits associated with this condition, and elucidate how congenital white matter alterations shape the topology of large-scale functional networks. By using resting-state BOLD functional magnetic resonance imaging (rsfMRI), here we show that acallosal BTBR T+tpr3tf/J (BTBR) mice, an idiopathic model of autism, exhibit impaired intra-hemispheric connectivity in fronto-cortical, but not in posterior sensory cortical areas. We also document profoundly altered subcortical and intra-hemispheric connectivity networks, with evidence of marked fronto-thalamic and striatal disconnectivity, along with aberrant spatial extension and strength of ipsilateral and local connectivity. Importantly, inter-hemispheric tracing of monosynaptic connections in the primary visual cortex using recombinant rabies virus confirmed the absence of direct homotopic pathways between posterior cortical areas of BTBR mice, suggesting a polysynaptic origin for the synchronous rsfMRI signal observed in these regions. Collectively, the observed long-range connectivity impairments recapitulate hallmark neuroimaging findings in autism, and are consistent with the behavioral phenotype of BTBR mice. In contrast to recent rsfMRI studies in high functioning AgCC individuals, the profound fronto-cortical and subcortical disconnectivity mapped suggest that compensatory mechanism may not necessarily restore the full connectional topology of the brain, resulting in residual connectivity alterations that serve as plausible substrates for the cognitive and emotional deficits often associated with AgCC.


Assuntos
Comportamento Animal/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Comportamento Social , Agenesia do Corpo Caloso/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Neocórtex/patologia , Rede Nervosa/fisiopatologia , Neuroimagem/métodos , Tálamo/patologia , Córtex Visual/fisiopatologia
15.
Nanotoxicology ; 8(2): 158-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23298388

RESUMO

Dendrimers are branched polymers with spherical morphology. Their tuneable chemistry and surface modification make them valuable nanomaterials for biomedical applications. In view of possible dendrimer uses as brain-aimed nanocarriers, the authors studied amine- and lipid-functionalised (G4) polyamidoamine (PAMAM) biocompatibility with cell population forming the blood-brain barrier (BBB). Both amine-PAMAM and lipid-PAMAM dendrimers were able to enter endothelial and primary neural cells. However, only amine-PAMAM damaged cell membranes in a dose-dependent manner. Transmission electron microscopy evidenced the ability of dendrimers to precipitate salts and serum components present in culture medium that slightly increased toxicity of the amine-PAMAM. Amine- and lipid-PAMAM were both able to cross the BBB and differently induced CD11b and CCR2 overexpression on primary CX3CR1-GFP murine microglia in vitro. These data emphasise the role of dendrimer surface functionalisation in toxicity and neural immune cell activation, raising concerns about possible neuroinflammatory reactions.


Assuntos
Barreira Hematoencefálica/citologia , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/toxicidade , Microglia/citologia , Aminas/química , Aminas/toxicidade , Animais , Linhagem Celular , Dendrímeros/química , Células Endoteliais , Lipídeos/química , Lipídeos/toxicidade , Camundongos
16.
J Vis Exp ; (85)2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24747480

RESUMO

Engineered nanoparticles are endowed with very promising properties for therapeutic and diagnostic purposes. This work describes a fast and reliable method of analysis by flow cytometry to study nanoparticle interaction with immune cells. Primary immune cells can be easily purified from human or mouse tissues by antibody-mediated magnetic isolation. In the first instance, the different cell populations running in a flow cytometer can be distinguished by the forward-scattered light (FSC), which is proportional to cell size, and the side-scattered light (SSC), related to cell internal complexity. Furthermore, fluorescently labeled antibodies against specific cell surface receptors permit the identification of several subpopulations within the same sample. Often, all these features vary when cells are boosted by external stimuli that change their physiological and morphological state. Here, 50 nm FITC-SiO2 nanoparticles are used as a model to identify the internalization of nanostructured materials in human blood immune cells. The cell fluorescence and side-scattered light increase after incubation with nanoparticles allowed us to define time and concentration dependence of nanoparticle-cell interaction. Moreover, such protocol can be extended to investigate Rhodamine-SiO2 nanoparticle interaction with primary microglia, the central nervous system resident immune cells, isolated from mutant mice that specifically express the Green Fluorescent Protein (GFP) in the monocyte/macrophage lineage. Finally, flow cytometry data related to nanoparticle internalization into the cells have been confirmed by confocal microscopy.


Assuntos
Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Leucócitos Mononucleares/citologia , Microglia/citologia , Nanopartículas/química , Adulto , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Leucócitos Mononucleares/química , Camundongos , Camundongos Transgênicos , Microglia/química , Pessoa de Meia-Idade , Nanopartículas/metabolismo , Dióxido de Silício/sangue , Dióxido de Silício/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA