Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38299629

RESUMO

We investigate the polarization of disk electrodes immersed in an electrolyte solution and subjected to a small external AC voltage over a wide range of frequencies. A mathematical model is developed based on the Debye-Falkenhagen approximation to the coupled Poisson-Nernst-Planck equations. Analytical techniques are used for predicting the spatial distribution of the electric potential and the complex impedance of the system. Scales for impedance and frequency are identified, which lead to a self-similar behavior for a range of frequencies. Experiments are conducted with gold electrodes of sizes in the range 100-350 µm immersed in a high-conductivity KCl solution over five orders of magnitude in frequency. A collapse of data on impedance magnitude and phase angle onto universal curves is observed with scalings motivated by the mathematical model. A direct comparison with the approximate analytical formula for impedance is made without any fitting parameters, and a good agreement is found for the range of frequencies where the analytical model is valid.

2.
Anal Chem ; 95(2): 836-845, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36592029

RESUMO

Although safe and efficacious coronavirus disease-2019 (COVID-19) vaccines are available, real protective immunity is revealed by the serum COVID-19 neutralizing antibody (NAb) concentration. NAbs deactivate the virus by attaching to the viral receptor-binding domain (RBD), which interacts with angiotensin-converting enzyme 2 (ACE2) on the human cell. This paper introduces inexpensive, rapid, sensitive, and quantifiable impedance-based immunosensors to evaluate the NAb. The sensor limit of detection is experimentally determined in different buffer dilutions using bovine IgG-anti-bovine IgG interaction. The dominance of AC electrokinetic transport and molecular diffusion in the sensor is investigated using scaling analysis and numerical simulations. The results demonstrated that the sensor detection mechanism is mainly based on the diffusion of the biomolecules onto the electrode surface. After evaluating the sensor working principles, viral RBD buffers, including different NAb concentrations, are applied to the sensor, immobilized with the human ACE2 (hACE2). Results demonstrate that the sensor is capable of NAb detection in the analytical measuring interval between 45 ng/mL and 185 ng/mL. Since the present sensor provides fast test results with lower costs, it can be used to assess the NAb in people's blood serum before receiving further COVID vaccine doses.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , Anticorpos Neutralizantes , Enzima de Conversão de Angiotensina 2 , Vacinas contra COVID-19 , SARS-CoV-2/metabolismo , Impedância Elétrica , Imunoensaio , Anticorpos Antivirais , Receptores Virais/metabolismo , Imunoglobulina G
3.
Langmuir ; 39(50): 18499-18508, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048562

RESUMO

Evaporation studies are focused on unraveling heat transfer and flow dynamics near the solid-liquid-vapor contact line, particularly focusing on the meniscus, which encompasses the nonevaporating adsorbed layer, thin-film, and bulk meniscus regions. Continuum models assume that there are no evaporating adsorbed layers due to the strong intermolecular forces. However, recent molecular dynamics (MD) simulations have unveiled the significant role of adsorbed layers in thin-film evaporation. Leveraging a recently published energy-based interface detection method, the current study presents nonequilibrium MD simulation results for thin-film evaporation from a phase-change-driven nanopump using liquid argon confined between parallel platinum plates. Notably, unlike the transient simulations often encountered in the literature, the simulation system achieves a statistically steady transport. In this context, we showcase the shapes of the evaporating menisci for two distinct channel heights, 8 and 16 nm, and elucidate the underlying flow physics through velocity vectors and temperature contours. This comprehensive investigation advances our understanding of thin-film evaporation and its mechanisms, offering insights that span from nanoscale phenomena to broader thermal management applications.

4.
Electrophoresis ; 43(12): 1263-1274, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35318691

RESUMO

The boundary effects on DC-electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles' surfaces. The electrokinetic slip-velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained and the physical insight for the behavior of the colloidal cylinders are discussed in conjunction with the experimental observations in the literature.

5.
Sensors (Basel) ; 22(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062423

RESUMO

Dielectric spectroscopy (DS) is a promising cell screening method that can be used for diagnostic and drug discovery purposes. The primary challenge of using DS in physiological buffers is the electrode polarization (EP) that overwhelms the impedance signal within a large frequency range. These effects further amplify with the miniaturization of the measurement electrodes. In this study, we present a microfluidic system and the associated equivalent circuit models for real-time measurements of cell membrane capacitance and cytoplasm resistance in physiological buffers with 10 s increments. The current device captures several hundreds of biological cells in individual microwells through gravitational settling and measures the system's impedance using microelectrodes covered with dendritic gold nanostructures. Using PC-3 cells (a highly metastatic prostate cancer cell line) suspended in cell growth media (CGM), we demonstrate stable measurements of cell membrane capacitance and cytoplasm resistance in the device for over 15 min. We also describe a consistent application of the equivalent circuit model, starting from the reference measurements used to determine the system parameters. The circuit model is tested using devices with varying dimensions, and the obtained cell parameters between different devices are nearly identical. Further analyses of the impedance data have shown that accurate cell membrane capacitance and cytoplasm resistance can be extracted using a limited number of measurements in the 5 MHz to 10 MHz range. This will potentially reduce the timescale required for real-time DS measurements below 1 s. Overall, the new microfluidic device can be used for the dielectric characterization of biological cells in physiological buffers for various cell screening applications.


Assuntos
Espectroscopia Dielétrica , Microfluídica , Impedância Elétrica , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Microeletrodos
6.
Anal Chem ; 92(11): 7762-7769, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32362110

RESUMO

Conventional immunosensors typically rely on passive diffusion dominated transport of analytes for binding reaction and hence, it is limited by low sensitivity and long detection times. We report a simple and efficient impedance sensing method that can be utilized to overcome both sensitivity and diffusion limitations of immunosensors. This method incorporates the structural advantage of nanorod-covered interdigitated electrodes and the microstirring effect of AC electrothermal flow (ACET) with impedance spectroscopy. ACET flow induced by a biased AC electric field can rapidly convect the analyte onto nanorod structured electrodes within a few seconds and enriches the number of binding molecules because of the excessive effective surface area. We performed numerical simulations to investigate the effect of ACET flow on the biosensor performance. The results indicated that AC bias to the side electrodes could induce fast convective flow, which facilitates the transport of the target molecules to the binding region located in the middle as a floating electrode. The temperature rise due to the Joule heating effect was measured using a thermoreflectance imaging method to find the optimum device operation conditions. The change of impedance caused by the receptors-target molecules binding at the sample/electrode interface was experimentally measured and quantified in real-time using the impedance spectroscopy technique. We observed that the impedance sensing method exhibited extremely fast response compared with those under no bias conditions. The measured impedance change can reach saturation in a minute. Compared to the conventional incubation method, the ACET flow enhanced method is faster in its reaction time, and the detection limit can be reduced to 1 ng/mL. In this work, we demonstrate that this sensor technology is promising and reliable for rapid, sensitive, and real-time monitoring of biomolecules in biologically relevant media such as blood, urine, and saliva.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Imunoglobulina G/análise , Nanopartículas/análise , Animais , Bovinos , Espectroscopia Dielétrica , Impedância Elétrica , Eletrodos , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
7.
Anal Chem ; 91(17): 11231-11239, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31381307

RESUMO

Classical electrochemistry problem of polarization of an electrode immersed in a symmetric binary electrolyte and subjected to a small external ac voltage is revisited. The Nernst-Planck equations are simplified to the Debye-Falkenhagen equation, which is solved together with the Poisson equation, leading to analytical formulas for the space charge density and impedance of the system for two parallel plate electrodes. We then define a limit of thin electrical double layer and illustrate the emergence of the characteristic time scale, τc = λDL/D, a function of the Debye length, λD, the electrode separation distance, L, and the ionic diffusion coefficient D. Normalizing the impedance magnitude with the solution resistance and making the frequency dimensionless with the τc, we show that all analytical, numerical, and experimental data for different solution conductivities and electrode separation distances collapse onto a single curve. To account for the Stern layer effects, we conducted numerical simulations based on the modified Poisson-Nernst-Planck model and showed that the results agree with our analytical solution for a range of concentrations, with small discrepancies observed only above 0.1 M. Based on the proposed model, experimental impedance spectroscopy results at ac potentials can be used to obtain detailed knowledge of the corresponding surface (and space) charge densities on the electrodes.

8.
Anal Chem ; 91(6): 4140-4148, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30793881

RESUMO

Dielectric spectroscopy is a nondestructive method to characterize dielectric properties by measuring impedance data over a frequency spectrum. This method has been widely used for various applications such as counting, sizing, and monitoring biological cells and particles. Recently, utilization of this method has been suggested in various stages of the drug discovery process due to low sample consumption and fast analysis time. In this study, we used a previously developed microfluidic system to confine single PC-3 cells in microwells using dielectrophoretic forces and perform the impedance measurements. PC-3 cells are treated with 100 µM Enzalutamide drug, and their impedance response is recorded until the cells are totally dead as predicted with viability tests. Four different approaches are used to analyze the impedance spectrum. Equivalent circuit modeling is used to extract the cell electrical properties as a function of time. Principal component analysis (PCA) is used to quantify cellular response to drug as a function of time. Single frequency measurements are conducted to observe how the cells respond over time. Finally, opacity ratio is defined as an additional quantification method. This device is capable of quantitatively measuring drug effects on biological cells and detecting cell death. The results show that the proposed microfluidic system has the potential to be used in early stages of the drug discovery process.


Assuntos
Técnicas Biossensoriais/métodos , Morte Celular , Impedância Elétrica , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Neoplasias da Próstata/patologia , Análise de Célula Única/métodos , Humanos , Masculino , Células Tumorais Cultivadas
9.
Anal Chem ; 91(19): 12492-12500, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498597

RESUMO

Alternating current electrothermal flow (ACET) induced by Joule heating is utilized to transport biologically relevant liquids in microchannels using simple electrode designs. However, Joule heating may cause significant temperature rises, which can degrade biological species, and hence, ACET may become impractical for biomicrofluidic sensors and other possible applications. In this study, the temperature rise at the electrode/electrolyte interface during ACET flow is measured using a high-resolution, noninvasive, thermoreflectance imaging method, which is generally utilized in microelectronics thermal imaging applications. The experimental findings reveal that Joule heating could result in an excessive temperature rise, exceeding 50 °C at higher voltage levels (20 Vpp). The measured data are compared with the results of the enhanced ACET theoretical model, which predicts the temperature rise accurately, even at high levels of applied voltages. Overall, our study provides a temperature measurement technique that is used for the first time for electrode/electrolyte systems. The reported results are critical in designing biomicrofluidic systems with significant energy dissipation in conductive fluids.

10.
Anal Chem ; 91(3): 2455-2463, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30582795

RESUMO

Electrode polarization effects were investigated using impedance spectroscopy measurements for planar and nanorod-structured gold disk electrodes at 100 Hz to 1 MHz frequency range and in 0.25 S/m to 1.5 S/m conductivity KCl solutions. Diameters of planar electrodes were varied from 50 µm to 2 mm to examine the effect of electrode size on impedance spectra. Normalizing the impedance magnitude with the spreading resistance and frequency with the characteristic time scale, all experimental data collapsed onto a universal curve, proving self-similarity. Experimental impedance results were compared well with that obtained from the numerical solution of Poisson-Nernst-Planck equations in axisymmetric domain. The influence of surface morphology was also investigated by generating cylindrical nanorods on a planar electrode. The 500 µm diameter electrode surface was covered with cylindrical nanorods with known height, diameter, and separation distance, which were characterized using scanning electron microscopy. The characteristic time scale for the nanorod-structured electrode increased by the surface enlargement factor obtained by cyclic voltammetry measurements. Self-similar interfacial impedance of electrodes was modeled using a constant phase element model. Current findings describe the coupled effects of electrode diameter, electrolyte conductivity, and electrode surface morphology on the impedance spectra of electrode/electrolyte system when the electric double layer between the nanorods does not overlap.

11.
Langmuir ; 35(13): 4491-4497, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30829490

RESUMO

Recent developments in fabrication techniques have enabled the production of nano- and Ångström-scale conduits. While scientists are able to conduct experimental studies to demonstrate extreme evaporation rates from these capillaries, theoretical modeling of evaporation from a few nanometers or sub-nanometer meniscus interfaces, where the adsorbed film, the transition film, and the intrinsic region are intertwined, is absent in the literature. Using the computational setup constructed, we first identified the detailed profile of a nanoscale evaporating interface and then discovered the existence of lateral momentum transport within and associated net evaporation from adsorbed liquid layers, which are long believed to be at the equilibrium established between equal rates of evaporation and condensation. Contribution of evaporation from the adsorbed layer increases the effective evaporation area, reducing the excessively estimated evaporation flux values. This work takes the first step toward a comprehensive understanding of atomic/molecular scale interfacial transport at extended evaporating menisci. The modeling strategy used in this study opens an opportunity for computational experimentation of steady-state evaporation and condensation at liquid-vapor interfaces located in capillary nanoconduits.

12.
Nanotechnology ; 30(23): 235501, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30776783

RESUMO

An ideal microelectrode array (MEA) design should include materials and structures which exhibit biocompatibility, low electrode polarization, low impedance/noise, and structural durability. Here, the fabrication of MEAs with indium tin oxide (ITO) electrodes deposited with self-similar gold nanostructures (GNS) is described. We show that fern leaf fractal-like GNS deposited on ITO electrodes are conducive for neural cell attachment and viability while reducing the interfacial impedance more than two orders of magnitude at low frequencies (100-1000 Hz) versus bare ITO. GNS MEAs, with low interfacial impedance, allowed the detection of extracellular action potentials with excellent signal-to-noise ratios (SNR, 20.26 ± 2.14). Additionally, the modified electrodes demonstrated electrochemical and mechanical stability over 29 d in vitro.

13.
Phys Chem Chem Phys ; 21(18): 9483-9494, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31016317

RESUMO

Water desalination using positively and negatively charged single-layer nanoporous graphene membranes are investigated using molecular dynamics (MD) simulations. Pressure-driven flows are induced by the motion of specular reflection boundaries with a constant speed, resulting in a prescribed volumetric flow rate. Simulations are performed for 14.40 Å hydraulic pore diameter membrane with four different electric charges distributed on the pore edges. Salt rejection efficiencies and the resulting pressure drops are compared with the previously obtained base-line case of 9.9 Å diameter pristine nanoporous graphene membrane, which exhibits 100% salt rejection with 35.02 MPa pressure drop at the same flow rate. Among the positively charged cases, q = 9e shows 100% and 98% rejection for Na+ and Cl- ions respectively, with 35% lower pressure drop than the reference. For negatively charged pores, optimum rejection efficiencies of 94% and 93% are obtained for Na+ and Cl- ions for the q = -6e case, which requires 60.6% less pressure drop than the reference. The results indicate the high potential of using charged nanoporous graphene membranes in reverse osmosis (RO) desalination systems with enhanced performance.

14.
J Chem Phys ; 151(17): 174705, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703484

RESUMO

Slip lengths reported from molecular dynamics (MD) simulations of water flow in graphene nanochannels show significant scatter in the literature. These discrepancies are in part due to the used water models. We demonstrate self-consistent comparisons of slip characteristics between the SPC, SPC/E, SPC/Fw, TIP3P, TIP4P, and TIP4P/2005 water models. The slip lengths are inferred using an analytical model that employs the shear viscosity of water and channel average velocities obtained from nonequilibrium MD simulations. First, viscosities for each water model are quantified using MD simulations of counterflowing, force-driven flows in periodic domains in the absence of physical walls. While the TIP4P/2005 model predicts water viscosity at the specified thermodynamic state with 1.7% error, the predictions of SPC/Fw and SPC/E models exhibit 13.9% and 23.1% deviations, respectively. Water viscosities obtained from SPC, TIP4P, and TIP3P models show larger deviations. Next, force-driven water flows in rigid (cold) and thermally vibrating (thermal) graphene nanochannels are simulated, resulting in pluglike velocity profiles. Large differences in the flow velocities are observed depending on the used water model and to a lesser extent on the choice of rigid vs thermal walls. Depending on the water model, the slip length of water on cold graphene walls varied between 34.2 nm and 62.9 nm, while the slip lengths of water on thermal graphene walls varied in the range of 38.1 nm-84.3 nm.

15.
Anal Chem ; 90(7): 4320-4327, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29402081

RESUMO

Dielectric spectroscopy (DS) is a noninvasive technique for real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for capturing, DS measurements, and unloading of biological cells. Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. A human prostate cancer cell line, PC-3, was used to evaluate the device performance. Suspension of PC-3 cells in low conductivity buffers (LCB) enhanced their dielectrophoretic trapping and impedance response. We report the time course of the variations in dielectric properties of PC-3 cells suspended in LCB and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. Importantly, we demonstrated that our device enabled real-time measurements of dielectric properties of live cancer cells and allowed the assessment of the cellular response to variations in buffer conductivity and pH. These data support further development of this device toward single cell measurements.


Assuntos
Espectroscopia Dielétrica , Impedância Elétrica , Dispositivos Lab-On-A-Chip , Neoplasias da Próstata/patologia , Sobrevivência Celular , Humanos , Concentração de Íons de Hidrogênio , Masculino , Células PC-3
16.
J Chem Phys ; 149(2): 024704, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007380

RESUMO

Transport of saltwater through pristine and positively charged single-layer graphene nanoporous membranes is investigated using molecular dynamics simulations. Pressure-driven flows are induced by motion of specular reflecting boundaries at feed and permeate sides with constant speed. Unlike previous studies in the literature, this method induces a desired flow rate and calculates the resulting pressure difference in the reservoirs. Due to the hexagonal structure of graphene, the hydraulic diameters of nano-pores are used to correlate flow rate and pressure drop data. Simulations are performed for three different pore sizes and flow rates for the pristine and charged membrane cases. In order to create better statistical averages for salt rejection rates, ten different initial conditions of Na+ and Cl- distribution in the feed side are used for each simulation case. Using data from 180 distinct simulation cases and utilizing the Buckingham Pi theorem, we develop a functional relationship between the volumetric flow rate, pressure drop, pore diameter, and the dynamic viscosity of saltwater. A linear relationship between the volumetric flow rate and pressure drop is observed. For the same flow rate and pore size, charged membranes exhibit larger pressure drops. Graphene membranes with 9.90 Å pore diameter results in 100% salt rejection with 163.2 l/h cm2 water flux, requiring a pressure drop of 35.02 MPa.

17.
Anal Chem ; 89(22): 12533-12540, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29083861

RESUMO

Electrode polarization (EP) happening due to accumulation of ions at the electrode/electrolyte interface is an inevitable phenomenon while measuring impedance spectrum in high conductivity buffers and at low RF spectrum. Well-characterized time scales elucidating the EP effect are important for the rational design of microfluidic devices and impedance sensors. In this Article, interfacial impedance at the electrode/electrolyte interface is investigated considering channel height and Debye length effects on characteristic time scale in a binary electrolyte solution using parallel plate electrode configuration. Experimental results reveal self-similarity of normalized electrical impedance as a function of the normalized frequency. The experimental results also match with numerical solutions obtained by finite element simulation of unsteady fully coupled Poisson-Nernst-Planck (PNP) equations. Furthermore, fractal shaped gold nanostructured electrodes are examined, and it has been proven that electric double layer (EDL) formed on porous electrode surfaces acts as a thick EDL and modifications to the characteristic time scale is necessary for porous electrodes. Finally, a constant phase element (CPE) model is proposed to account for the self-similar impedance spectrum, which can be used for different channel heights and solution conductivities.

18.
Electrophoresis ; 38(11): 1458-1465, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28130914

RESUMO

Dielectrophoretic motions of Saccharomyces cerevisiae (yeast) cells and colloidal gold are investigated using electrochemically modified electrodes exhibiting fractal topology. Electrodeposition of gold on electrodes generated repeated patterns with a fern-leaf type self-similarity. A particle tracking algorithm is used to extract dielectrophoretic particle velocities using fractal and planar electrodes in two different medium conductivities. The results show increased dielectrophoretic force when using fractal electrodes. Strong negative dielectrophoresis of yeast cells in high-conductivity media (1.5 S/m) is observed using fractal electrodes, while no significant motion is present using planar electrodes. Electrical impedance at the electrode/electrolyte interface is measured using impedance spectroscopy technique. Stronger electrode polarization (EP) effects are reported for planar electrodes. Decreased EP in fractal electrodes is considered as a reason for enhanced dielectrophoretic response.


Assuntos
Eletroforese , Coloide de Ouro , Microeletrodos , Nanoestruturas , Saccharomyces cerevisiae , Algoritmos , Impedância Elétrica , Eletricidade , Eletroforese/instrumentação , Eletroforese/métodos , Fractais , Nanopartículas Metálicas , Movimento (Física) , Nanoestruturas/química , Tamanho da Partícula , Propriedades de Superfície
19.
Electrophoresis ; 38(11): 1466-1474, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28256738

RESUMO

Dielectric spectroscopy (DS) is a noninvasive, label-free, fast, and promising technique for measuring dielectric properties of biological cells in real time. We demonstrate a microchip that consists of electro-activated microwell arrays for positive dielectrophoresis assisted cell capture, DS measurements, and negative dielectrophoresis driven cell unloading; thus, providing a high-throughput cell analysis platform. To the best of our knowledge, this is the first microfluidic chip that combines electro-activated microwells and DS to analyze biological cells. Device performance is tested using Saccharomyces cerevisiae (yeast) cells. DEP response of yeast cells is determined by measuring their Clausius-Mossotti factor using biophysical models in parallel plate microelectrode geometry. This information is used to determine the excitation frequency to load and unload wells. Effect of yeast cells on the measured impedance spectrum was examined both experimentally and numerically. Good match between the numerical and experimental results establishes the potential use of the microchip device for extracting subcellular properties of biological cells in a rapid and nonexpensive manner.


Assuntos
Espectroscopia Dielétrica/métodos , Eletroforese em Microchip , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Saccharomyces cerevisiae , Simulação por Computador , Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Desenho de Equipamento , Ouro , Microeletrodos , Modelos Teóricos , Raios Ultravioleta
20.
Phys Chem Chem Phys ; 19(16): 10317-10325, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28398441

RESUMO

This paper concentrates on the unconventional temperature profiles and heat fluxes observed in non-equilibrium molecular dynamics (MD) simulations of force-driven liquid flows in nano-channels. Using MD simulations of liquid argon flows in gold nano-channels, we investigate the manifestation of the first law of thermodynamics for the MD system, and compare it with that of the continuum fluid mechanics. While the energy equation for the continuum system results in heat conduction determined by viscous heating, the first law of thermodynamics in the MD system includes an additional slip-heating term. Interaction strength between argon and gold molecules is varied in order to investigate the effects of slip-velocity on the slip-heating term and the resulting temperature profiles. Heat fluxes and temperature profiles from "continuum", "continuum augmented with slip-heating", and "heat conduction due to the power input by the driving force" are modeled and compared with the MD results. The continuum model can neither predict the heat fluxes nor the temperature profiles from MD simulations. While the continuum model augmented with slip-heating matches the MD heat fluxes, the resulting temperature profiles do not agree with the MD predictions. Overall the analytical model based on "heat conduction due to power input by the driving force" matches the heat fluxes from MD simulations, while the temperature profiles match MD predictions using an effective thermal conductivity that is about 70% of the thermodynamic value. Using different liquid-wall pairs affects the slip velocity, temperature jump, and the resulting thermal conductivity of the fluid, but results in similar physical observations. The inability of the MD method in mimicking continuum fluid mechanics in energy transport for force-driven liquid flows is scale independent, and it is more likely a numerical artifact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA