Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401542, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958349

RESUMO

Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.

2.
J Am Chem Soc ; 145(28): 15251-15264, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37392180

RESUMO

Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.


Assuntos
Lisina , Proteínas Associadas aos Microtúbulos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Lisina/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/química , Microtúbulos/metabolismo
3.
Biomacromolecules ; 24(8): 3666-3679, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37507377

RESUMO

Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Survivina , Células HeLa , Proteínas Inibidoras de Apoptose/metabolismo , Substâncias Macromoleculares/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo
4.
Inorg Chem ; 62(42): 17470-17485, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37820300

RESUMO

Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.

5.
Biomacromolecules ; 23(11): 4504-4518, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200481

RESUMO

Many natural proteins contain flexible loops utilizing well-defined complementary surface regions of their interacting partners and usually undergo major structural rearrangements to allow perfect binding. The molecular recognition of such flexible structures is still highly challenging due to the inherent conformational dynamics. Notably, protein-protein interactions are on the other hand characterized by a multivalent display of complementary binding partners to enhance molecular affinity and specificity. Imitating this natural concept, we here report the rational design of advanced multivalent supramolecular tweezers that allow addressing two lysine and arginine clusters on a flexible protein surface loop. The protease Taspase 1, which is involved in cancer development, carries a basic bipartite nuclear localization signal (NLS) and thus interacts with Importin α, a prerequisite for proteolytic activation. Newly established synthesis routes enabled us to covalently fuse several tweezer molecules into multivalent NLS ligands. The resulting bi- up to pentavalent constructs were then systematically compared in comprehensive biochemical assays. In this series, the stepwise increase in valency was robustly reflected by the ligands' gradually enhanced potency to disrupt the interaction of Taspase 1 with Importin α, correlated with both higher binding affinity and inhibition of proteolytic activity.


Assuntos
Núcleo Celular , alfa Carioferinas , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Ligantes , Ligação Proteica , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas/metabolismo , Peptídeo Hidrolases/metabolismo
6.
Inorg Chem ; 61(12): 5133-5147, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285631

RESUMO

Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.


Assuntos
Nanopartículas Metálicas , Óxidos , Nanopartículas Metálicas/química , Óxidos/química , Platina/química , Água/química , Difração de Raios X
7.
Chembiochem ; 22(8): 1456-1463, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33275809

RESUMO

The surface of ultrasmall gold nanoparticles with an average diameter of 1.55 nm was conjugated with a 14-3-3 protein-binding peptide derived from CRaf. Each particle carries 18 CRaf peptides, leading to an overall stoichiometry of Au(115)Craf(18). The binding to the protein 14-3-3 was probed by isothermal titration calorimetry (ITC) and fluorescence polarization spectroscopy (FP). The dissociation constant (KD ) was measured as 5.0 µM by ITC and 0.9 µM by FP, which was close to the affinity of dissolved CRaf to 14-3-3σ. In contrast to dissolved CRaf, which alone did not enter HeLa cells, CRAF-conjugated gold nanoparticles were well taken up by HeLa cells, opening the opportunity to target the protein inside a cell.


Assuntos
Proteínas 14-3-3/química , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Células HeLa , Humanos , Tamanho da Partícula , Propriedades de Superfície
8.
Angew Chem Int Ed Engl ; 59(14): 5567-5571, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31916356

RESUMO

The protein Survivin is highly upregulated in most cancers and considered to be a key player in carcinogenesis. We explored a supramolecular approach to address Survivin as a drug target by inhibiting the protein-protein interaction of Survivin and its functionally relevant binding partner Histone H3. Ligand L1 is based on the guanidiniocarbonyl pyrrole cation and serves as a highly specific anion binder in order to target the interaction between Survivin and Histone H3. NMR titration confirmed binding of L1 to Survivin's Histone H3 binding site. The inhibition of the Survivin-Histone H3 interaction and consequently a reduction of cancer cell proliferation were demonstrated by microscopic and cellular assays.


Assuntos
Histonas/metabolismo , Pirróis/química , Survivina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Histonas/química , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Ligação Proteica , Pirróis/metabolismo , Pirróis/farmacologia , Survivina/química
9.
Beilstein J Org Chem ; 16: 2505-2522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33093929

RESUMO

As one of the few analytical methods that offer atomic resolution, NMR spectroscopy is a valuable tool to study the interaction of proteins with their interaction partners, both biomolecules and synthetic ligands. In recent years, the focus in chemistry has kept expanding from targeting small binding pockets in proteins to recognizing patches on protein surfaces, mostly via supramolecular chemistry, with the goal to modulate protein-protein interactions. Here we present NMR methods that have been applied to characterize these molecular interactions and discuss the challenges of this endeavor.

10.
Chembiochem ; 20(23): 2921-2926, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31168888

RESUMO

Modulation of protein-protein interactions (PPIs) is essential for understanding and tuning biologically relevant processes. Although inhibitors for PPIs are widely used, the field still lacks the targeted design of stabilizers. Here, we report unnatural stabilizers based on the combination of multivalency effects and the artificial building block guanidiniocarbonylpyrrol (GCP), an arginine mimetic. Unlike other GCP-based ligands that modulate PPIs in different protein targets, only a tetrameric design shows potent activity as stabilizer of the 14-3-3ζ/C-Raf and 14-3-3ζ/Tau complexes in the low-micromolar range. This evidences the role of multivalency for achieving higher specificity in the modulation of PPIs.


Assuntos
Proteínas 14-3-3/metabolismo , Guanidinas/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Pirróis/química , Proteínas tau/metabolismo , Proteínas 14-3-3/química , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-raf/química , Proteínas tau/química
11.
Langmuir ; 35(22): 7191-7204, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31039607

RESUMO

Ultrasmall gold nanoparticles (core diameter 2 nm) were surface-conjugated with azide groups by attaching the azide-functionalized tripeptide lysine(N3)-cysteine-asparagine with ∼117 molecules on each nanoparticle. A covalent surface modification with alkyne-containing molecules was then possible by copper-catalyzed click chemistry. The successful clicking to the nanoparticle surface was demonstrated with 13C-labeled propargyl alcohol. All steps of the nanoparticle surface conjugation were verified by extensive NMR spectroscopy on dispersed nanoparticles. The particle diameter and the dispersion state were assessed by high-resolution transmission electron microscopy (HRTEM), differential centrifugal sedimentation (DCS), and 1H-DOSY NMR spectroscopy. The clicking of fluorescein (FAM-alkyne) gave strongly fluorescing ultrasmall nanoparticles that were traced inside eukaryotic cells. The uptake of these nanoparticles after 24 h by HeLa cells was very efficient and showed that the nanoparticles even penetrated the nuclear membrane to a very high degree (in contrast to dissolved FAM-alkyne alone that did not enter the cell). About 8 fluorescein molecules were clicked to each nanoparticle.

12.
Langmuir ; 35(3): 767-778, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30576151

RESUMO

Ultrasmall gold nanoparticles with a diameter of 1.8 nm were synthesized by reduction of tetrachloroauric acid with sodium borohydride in the presence of l-cysteine, with natural isotope abundance as well as 13C-labeled and 15N-labeled. The particle diameter was determined by high-resolution transmission electron microscopy and differential centrifugal sedimentation. X-ray photoelectron spectroscopy confirmed the presence of metallic gold with only a few percent of oxidized Au(+I) species. The surface structure and the coordination environment of the cysteine ligands on the ultrasmall gold nanoparticles were studied by a variety of homo- and heteronuclear NMR spectroscopic techniques including 1H-13C-heteronuclear single-quantum coherence and 13C-13C-INADEQUATE. Further information on the binding situation (including the absence of residual or detached l-cysteine in the solution) and on the nanoparticle diameter (indicating the well-dispersed state) was obtained by diffusion-ordered spectroscopy (1H-, 13C-, and 1H-13C-DOSY). Three coordination environments of l-cysteine on the gold surface were identified that were ascribed to different crystallographic sites, supported by geometric considerations of the nanoparticle ultrastructure. The particle size data and the NMR-spectroscopic analysis gave a particle composition of about Au174(cysteine)67.

13.
Angew Chem Int Ed Engl ; 56(46): 14758-14762, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28877391

RESUMO

Targeting protein surfaces involved in protein-protein interactions by using supramolecular chemistry is a rapidly growing field. NMR spectroscopy is the method of choice to map ligand-binding sites with single-residue resolution by amide chemical shift perturbation and line broadening. However, large aromatic ligands affect NMR signals over a greater distance, and the binding site cannot be determined unambiguously by relying on backbone signals only. We herein employed Lys- and Arg-specific H2(C)N NMR experiments to directly observe the side-chain atoms in close contact with the ligand, for which the largest changes in the NMR signals are expected. The binding of Lys- and Arg-specific supramolecular tweezers and a calixarene to two model proteins was studied. The H2(C)N spectra track the terminal CH2 groups of all Lys and Arg residues, revealing significant differences in their binding kinetics and chemical shift perturbation, and can be used to clearly pinpoint the order of ligand binding.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Sítios de Ligação , Ligantes , Modelos Moleculares , Conformação Proteica
14.
Beilstein J Org Chem ; 10: 2293-306, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25298797

RESUMO

Covalently interstrand cross-linked DNA is an interesting tool to study DNA binding proteins that locally open up the DNA duplex by flipping single bases out of the DNA helix or melting whole stretches of base pairs to perform their function. The ideal DNA cross-link to study protein-DNA interactions should be specific and easy to synthesize, be stable during protein binding experiments, have a short covalent linker to avoid steric hindrance of protein binding, and should be available as a mimic for both A/T and G/C base pairs to cover all possible binding specificities. Several covalent interstrand cross-links have been described in the literature, but most of them fall short of at least one of the above criteria. We developed an efficient method to site-specifically and reversibly cross-link thionucleoside base pairs in synthetic duplex oligodeoxynucleotides by bisalkylation with 1,2-diiodoethane resulting in an ethylene-bridged base pair. Both linked A/T and G/C base pair analogs can conveniently be prepared which allows studying any base pair-opening enzyme regardless of its sequence specificity. The cross-link is stable in the absence of reducing agents but the linker can be quickly and tracelessly removed by the addition of thiol reagents like dithiothreitol. This property makes the cross-linking reaction fully reversible and allows for a switching of the linked base pair from locked to unlocked during biochemical experiments. Using the DNA methyltransferase from Thermus aquaticus (M.TaqI) as example, we demonstrate that the presented cross-linked DNA with an ethylene-linked A/T base pair analog at the target position is a useful tool to determine the base-flipping equilibrium constant of a base-flipping enzyme which lies mostly on the extrahelical side for M.TaqI.

15.
Nanoscale Adv ; 6(13): 3285-3298, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38933863

RESUMO

Ultrasmall nanoparticles have a diameter between 1 and 3 nm at the border between nanoparticles and large molecules. Usually, their core consists of a metal, and the shell of a capping ligand with sulfur or phosphorus as binding atoms. While the core structure can be probed by electron microscopy, electron and powder diffraction, and single-crystal structure analysis for atom-sharp clusters, it is more difficult to analyze the ligand shell. In contrast to larger nanoparticles, ultrasmall nanoparticles cause only a moderate distortion of the NMR signal, making NMR spectroscopy a qualitative as well as a quantitative probe to assess the nature of the ligand shell. The application of isotope-labelled ligands and of two-dimensional NMR techniques can give deeper insight into ligand-nanoparticle interactions. Applications of one- and two-dimensional NMR spectroscopy to analyze ultrasmall nanoparticles are presented with suitable examples, including a critical discussion of the limitations of NMR spectroscopy on nanoparticles.

16.
J Phys Chem B ; 128(17): 4266-4281, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38640461

RESUMO

Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by 1H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). 1H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative 1H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm2.


Assuntos
Ouro , Nanopartículas Metálicas , Peptídeos , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Propriedades de Superfície , Tamanho da Partícula
17.
Nat Commun ; 15(1): 5944, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013852

RESUMO

Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Animais , Humanos , Camundongos , Conformação Proteica , Multimerização Proteica , Células HEK293 , Encéfalo/metabolismo , Encéfalo/patologia , Mutação , Mutação com Perda de Função
18.
Nat Commun ; 14(1): 3258, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277335

RESUMO

The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas de Transporte/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Estrutura Terciária de Proteína , Ligação Proteica , Ubiquitina/metabolismo , Proteínas de Ciclo Celular/metabolismo
19.
RSC Adv ; 12(53): 34176-34184, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545626

RESUMO

Therapy resistance remains a challenge for the clinics. Here, dual-active chemicals that simultaneously inhibit independent functions in disease-relevant proteins are desired though highly challenging. As a model, we here addressed the unique protease threonine aspartase 1, involved in various cancers. We hypothesized that targeting basic residues in its bipartite nuclear localization signal (NLS) by precise bisphosphate ligands inhibits additional steps required for protease activity. We report the bisphosphate anionic bivalent inhibitor 11d, selectively binding to the basic NLS cluster (220KKRR223) with high affinity (K D = 300 nM), thereby disrupting its interaction and function with Importin α (IC50 = 6 µM). Cell-free assays revealed that 11d additionally affected the protease's catalytic substrate trans-cleavage activity. Importantly, functional assays comprehensively demonstrated that 11d inhibited threonine aspartase 1 also in living tumor cells. We demonstrate for the first time that intracellular interference with independent key functions in a disease-relevant protein by an inhibitor binding to a single site is possible.

20.
J Phys Chem B ; 125(21): 5645-5659, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34029093

RESUMO

Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 µg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.


Assuntos
Nanopartículas Metálicas , Prata , Células HeLa , Humanos , Ligantes , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA