Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell ; 186(16): 3386-3399.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541196

RESUMO

The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.


Assuntos
Trânsito Gastrointestinal , Canais Iônicos , Mecanotransdução Celular , Animais , Humanos , Camundongos , Digestão , Canais Iônicos/metabolismo , Neurônios/metabolismo
2.
Am J Physiol Cell Physiol ; 326(2): C622-C631, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189136

RESUMO

The recently discovered ion channel TMEM63A has biophysical features distinctive for mechano-gated cation channels, activating at high pressures with slow kinetics while not inactivating. However, some biophysical properties are less clear, including no information on its function in whole cells. The aim of this study is to expand the TMEM63A biophysical characterization and examine the function in whole cells. Piezo1-knockout HEK293T cells were cotransfected with human TMEM63A and green fluorescent protein (GFP), and macroscopic currents in cell-attached patches were recorded by high-speed pressure clamp at holding voltages from -120 to -20 mV with 0-100 mmHg patch suction for 1 s. HEK293 cells cotransfected with TMEM63A and GCaMP5 were seeded onto polydimethylsiloxane (PDMS) membrane, and the response to 3-12 s of 1%-15% whole cell isotropic (equi-biaxial) stretch induced by an IsoStretcher was measured by the change in intracellular calcium ([Ca2+]i) and presented as (ΔF/F0 > 1). Increasing patch pressures activated TMEM63A currents with accelerating activation kinetics and current amplitudes that were pressure dependent but voltage independent. TMEM63A currents were plateaued within 2 s, recovered quickly, and were sensitive to Gd3+. In whole cells stretched on flexible membranes, radial stretch increased the [Ca2+]i responses in a larger proportion of cells cotransfected with TMEM63A and GCaMP5 than GCaMP5-only controls. TMEM63A currents are force activated and voltage insensitive, have a high threshold for pressure activation with slow activation and deactivation, and lack inactivation over 5 s. TMEM63A has the net polarity and kinetics that would depolarize plasma membranes and increase inward currents, contributing to a sustained [Ca2+]i increase in response to high stretch.NEW & NOTEWORTHY TMEM63A has biophysical features distinctive for mechano-gated cation channels, but some properties are less clear, including no functional information in whole cells. We report that pressure-dependent yet voltage-independent TMEM63A currents in cell membrane patches correlated with cell size. In addition, radial stretch of whole cells on flexible membranes increased the [Ca2+]i responses more in TMEM63A-transfected cells. Inward TMEM63A currents in response to high stretch can depolarize plasma membranes and contribute to a sustained [Ca2+]i increase.


Assuntos
Canais Iônicos , Humanos , Cátions/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Canais Iônicos/metabolismo , Cinética , Potenciais da Membrana/fisiologia
3.
J Physiol ; 601(2): 287-305, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36428286

RESUMO

Enteroendocrine cells (EECs) are specialized sensors of luminal forces and chemicals in the gastrointestinal (GI) epithelium that respond to stimulation with a release of signalling molecules such as serotonin (5-HT). For mechanosensitive EECs, force activates Piezo2 channels, which generate a very rapidly activating and inactivating (∼10 ms) cationic (Na+ , K+ , Ca2+ ) receptor current. Piezo2 receptor currents lead to a large and persistent increase in intracellular calcium (Ca2+ ) that lasts many seconds to sometimes minutes, suggesting signal amplification. However, intracellular calcium dynamics in EEC mechanotransduction remain poorly understood. The aim of this study was to determine the role of Ca2+ stores in EEC mechanotransduction. Mechanical stimulation of a human EEC cell model (QGP-1) resulted in a rapid increase in cytoplasmic Ca2+ and a slower decrease in ER stores Ca2+ , suggesting the involvement of intracellular Ca2+ stores. Comparing murine primary colonic EECs with colonocytes showed expression of intercellular Ca2+ store receptors, a similar expression of IP3 receptors, but a >30-fold enriched expression of Ryr3 in EECs. In mechanically stimulated primary EECs, Ca2+ responses decreased dramatically by emptying stores and pharmacologically blocking IP3 and RyR1/3 receptors. RyR3 genetic knockdown by siRNA led to a significant decrease in mechanosensitive Ca2+ responses and 5-HT release. In tissue, pressure-induced increase in the Ussing short circuit current was significantly decreased by ryanodine receptor blockade. Our data show that mechanosensitive EECs use intracellular Ca2+ stores to amplify mechanically induced Ca2+ entry, with RyR3 receptors selectively expressed in EECs and involved in Ca2+ signalling, 5-HT release and epithelial secretion. KEY POINTS: A population of enteroendocrine cells (EECs) are specialized mechanosensors of the gastrointestinal (GI) epithelium that respond to mechanical stimulation with the release of important signalling molecules such as serotonin. Mechanical activation of these EECs leads to an increase in intracellular calcium (Ca2+ ) with a longer duration than the stimulus, suggesting intracellular Ca2+ signal amplification. In this study, we profiled the expression of intracellular Ca2+ store receptors and found an enriched expression of the intracellular Ca2+ receptor Ryr3, which contributed to the mechanically evoked increases in intracellular calcium, 5-HT release and epithelial secretion. Our data suggest that mechanosensitive EECs rely on intracellular Ca2+ stores and are selective in their use of Ryr3 for amplification of intracellular Ca2+ . This work advances our understanding of EEC mechanotransduction and may provide novel diagnostic and therapeutic targets for GI motility disorders.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Serotonina , Camundongos , Animais , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Rianodina/farmacologia , Serotonina/metabolismo , Cálcio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Mecanotransdução Celular , Células Enteroendócrinas/metabolismo
4.
Gastroenterology ; 162(2): 535-547.e13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34688712

RESUMO

BACKGROUND AND AIMS: The gastrointestinal (GI) tract extracts nutrients from ingested meals while protecting the organism from infectious agents frequently present in meals. Consequently, most animals conduct the entire digestive process within the GI tract while keeping the luminal contents entirely outside the body, separated by the tightly sealed GI epithelium. Therefore, like the skin and oral cavity, the GI tract must sense the chemical and physical properties of the its external interface to optimize its function. Specialized sensory enteroendocrine cells (EECs) in GI epithelium interact intimately with luminal contents. A subpopulation of EECs express the mechanically gated ion channel Piezo2 and are developmentally and functionally like the skin's touch sensor- the Merkel cell. We hypothesized that Piezo2+ EECs endow the gut with intrinsic tactile sensitivity. METHODS: We generated transgenic mouse models with optogenetic activators in EECs and Piezo2 conditional knockouts. We used a range of reference standard and novel techniques from single cells to living animals, including single-cell RNA sequencing and opto-electrophysiology, opto-organ baths with luminal shear forces, and in vivo studies that assayed GI transit while manipulating the physical properties of luminal contents. RESULTS: Piezo2+ EECs have transcriptomic features of synaptically connected, mechanosensory epithelial cells. EEC activation by optogenetics and forces led to Piezo2-dependent alterations in colonic propagating contractions driven by intrinsic circuitry, with Piezo2+ EECs detecting the small luminal forces and physical properties of the luminal contents to regulate transit times in the small and large bowel. CONCLUSIONS: The GI tract has intrinsic tactile sensitivity that depends on Piezo2+ EECs and allows it to detect luminal forces and physical properties of luminal contents to modulate physiology.


Assuntos
Células Enteroendócrinas/metabolismo , Mucosa Intestinal/metabolismo , Canais Iônicos/genética , Tato/fisiologia , Animais , Células Enteroendócrinas/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Técnicas de Inativação de Genes , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Canais Iônicos/metabolismo , Mecanorreceptores , Camundongos , Camundongos Transgênicos , Optogenética , Peristaltismo/fisiologia
5.
Am J Physiol Gastrointest Liver Physiol ; 322(4): G431-G445, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137624

RESUMO

Gastric motility is coordinated by underlying bioelectrical slow waves. Gastric dysrhythmias occur in gastrointestinal (GI) motility disorders, but there are no validated methods for eliminating dysrhythmias. We hypothesized that targeted ablation could eliminate pacemaker sites in the stomach, including dysrhythmic ectopic pacemaker sites. In vivo high-resolution serosal electrical mapping (16 × 16 electrodes; 6 × 6 cm) was applied to localize normal and ectopic gastric pacemaker sites in 13 anesthetized pigs. Radiofrequency ablation was performed in a square formation surrounding the pacemaker site. Postablation high-resolution mapping revealed that ablation successfully induced localized conduction blocks after 18 min (SD 5). Normal gastric pacemaker sites were eliminated by ablation (n = 6), resulting in the emergence of a new pacemaker site immediately distal to the original site in all cases. Ectopic pacemaker sites were similarly eliminated by ablation in all cases (n = 7), and the surrounding mapped area was then entrained by normal antegrade activity in five of those cases. Histological analysis showed that ablation lesions extended through the entire depth of the muscle layer. Immunohistochemical staining confirmed localized interruption of the interstitial cell of Cajal (ICC) network through the ablation lesions. This study demonstrates that targeted gastric ablation can effectively modulate gastric electrical activation, including eliminating ectopic sites of slow wave activation underlying gastric dysrhythmias, without disrupting surrounding conduction capability or tissue structure. Gastric ablation presents a powerful new research tool for modulating gastric electrical activation and may likely hold therapeutic potential for disorders of gastric function.NEW & NOTEWORTHY This study presents gastric ablation as a novel tool for modulating gastric bioelectrical activation, including eliminating the normal gastric pacemaker site as well as abnormal ectopic pacemaker sites underlying gastric dysrhythmias. Targeted application of radiofrequency ablation was able to eliminate these pacemaker sites without disrupting surrounding conduction capability or tissue structure. Gastric ablation presents a powerful new research tool for modulating gastric electrical activation and may likely hold therapeutic potential for disorders of gastric function.


Assuntos
Ablação por Cateter , Gastroenteropatias , Células Intersticiais de Cajal , Animais , Motilidade Gastrointestinal/fisiologia , Células Intersticiais de Cajal/fisiologia , Membrana Serosa , Estômago/fisiologia , Suínos
6.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G640-G652, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255716

RESUMO

Gastric ablation has demonstrated potential to induce conduction blocks and correct abnormal electrical activity (i.e., ectopic slow-wave propagation) in acute, intraoperative in vivo studies. This study aimed to evaluate the safety and feasibility of gastric ablation to modulate slow-wave conduction after 2 wk of healing. Chronic in vivo experiments were performed in weaner pigs (n = 6). Animals were randomly divided into two groups: sham-ablation (n = 3, control group; no power delivery, room temperature, 5 s/point) and radiofrequency (RF) ablation (n = 3; temperature-control mode, 65°C, 5 s/point). In the initial surgery, high-resolution serosal electrical mapping (16 × 16 electrodes; 6 × 6 cm) was performed to define the baseline slow-wave activation profile. Ablation (sham/RF) was then performed in the mid-corpus, in a line around the circumferential axis of the stomach, followed by acute postablation mapping. All animals recovered from the procedure, with no sign of perforation or other complications. Two weeks later, intraoperative high-resolution mapping was repeated. High-resolution mapping showed that ablation successfully induced sustained conduction blocks in all cases in the RF-ablation group at both the acute and 2 wk time points, whereas all sham-controls had no conduction block. Histological and immunohistochemical evaluation showed that after 2 wk of healing, the lesions were in the inflammation and early proliferation phase, and interstitial cells of Cajal (ICC) were depleted and/or deformed within the ablation lesions. This safety and feasibility study demonstrates that gastric ablation can safely and effectively induce a sustained localized conduction block in the stomach without disrupting the surrounding slow-wave conduction capability.NEW & NOTEWORTHY Ablation has recently emerged as a tool for modulating gastric electrical activation and may hold interventional potential for disorders of gastric function. However, previous studies have been limited to the acute intraoperative setting. This study now presents the safety of gastric ablation after postsurgical recovery and healing. Localized electrical conduction blocks created by ablation remained after 2 wk of healing, and no perforation or other complications were observed over the postsurgical period.


Assuntos
Ablação por Cateter , Células Intersticiais de Cajal , Animais , Ablação por Cateter/efeitos adversos , Estudos de Viabilidade , Células Intersticiais de Cajal/fisiologia , Membrana Serosa , Estômago/fisiologia , Suínos
7.
Cell Mol Life Sci ; 78(4): 1565-1575, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32676916

RESUMO

Nicotinic acetylcholine receptors (nAChRs) belong to the superfamily of pentameric ligand-gated ion channels, and in neuronal tissues, are assembled from various types of α- and ß-subunits. Furthermore, the subunits α4 and ß2 assemble in two predominant stoichiometric forms, (α4)2(ß2)3 and (α4)3(ß2)2, forming receptors with dramatically different sensitivity to agonists and allosteric modulators. However, mechanisms by which the two stoichiometric forms are regulated are not known. Here, using heterologous expression in mammalian cells, single-channel patch-clamp electrophysiology, and calcium imaging, we show that the ER-resident protein NACHO selectively promotes the expression of the (α4)2(ß2)3 stoichiometry, whereas the cytosolic molecular chaperone 14-3-3η selectively promotes the expression of the (α4)3(ß2)2 stoichiometry. Thus, NACHO and 14-3-3η are potential physiological regulators of subunit stoichiometry, and are potential drug targets for re-balancing the stoichiometry in pathological conditions involving α4ß2 nAChRs such as nicotine dependence and epilepsy.


Assuntos
Proteínas 14-3-3/genética , Neurônios/metabolismo , Subunidades Proteicas/genética , Receptores Nicotínicos/genética , Acetilcolina/genética , Acetilcolina/metabolismo , Animais , Humanos , Ligantes , Agonistas Nicotínicos/farmacologia , Oxidiazóis/metabolismo , Técnicas de Patch-Clamp
8.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077309

RESUMO

BACKGROUND: Mechanically gated PIEZO channels lead to an influx of cations, activation of additional Ca2+ channels, and cell depolarization. This study aimed to investigate PIEZO2's role in breast cancer. METHODS: The clinical relevance of PIEZO2 expression in breast cancer patient was analyzed in a publicly available dataset. Utilizing PIEZO2 overexpressed breast cancer cells, and in vitro and in vivo experiments were conducted. RESULTS: High expression of PIEZO2 was correlated with a worse survival in triple-negative breast cancer (TNBC) but not in other subtypes. Increased PEIZO2 channel function was confirmed in PIEZO2 overexpressed cells after mechanical stimulation. PIEZO2 overexpressed cells showed increased motility and invasive phenotypes as well as higher expression of SNAIL and Vimentin and lower expression of E-cadherin in TNBC cells. Correspondingly, high expression of PIEZO2 was correlated with the increased expression of epithelial-mesenchymal transition (EMT)-related genes in a TNBC patient. Activated Akt signaling was observed in PIEZO2 overexpressed TNBC cells. PIEZO2 overexpressed MDA-MB-231 cells formed a significantly higher number of lung metastases after orthotopic implantation. CONCLUSION: PIEZO2 activation led to enhanced SNAIL stabilization through Akt activation. It enhanced Vimentin and repressed E-cadherin transcription, resulting in increased metastatic potential and poor clinical outcomes in TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Canais Iônicos/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/genética , Vimentina/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 320(5): G897-G906, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33729004

RESUMO

Mechanosensation, the ability to properly sense mechanical stimuli and transduce them into physiologic responses, is an essential determinant of gastrointestinal (GI) function. Abnormalities in this process result in highly prevalent GI functional and motility disorders. In the GI tract, several cell types sense mechanical forces and transduce them into electrical signals, which elicit specific cellular responses. Some mechanosensitive cells like sensory neurons act as specialized mechanosensitive cells that detect forces and transduce signals into tissue-level physiological reactions. Nonspecialized mechanosensitive cells like smooth muscle cells (SMCs) adjust their function in response to forces. Mechanosensitive cells use various mechanoreceptors and mechanotransducers. Mechanoreceptors detect and convert force into electrical and biochemical signals, and mechanotransducers amplify and direct mechanoreceptor responses. Mechanoreceptors and mechanotransducers include ion channels, specialized cytoskeletal proteins, cell junction molecules, and G protein-coupled receptors. SMCs are particularly important due to their role as final effectors for motor function. Myogenic reflex-the ability of smooth muscle to contract in response to stretch rapidly-is a critical smooth muscle function. Such rapid mechanotransduction responses rely on mechano-gated and mechanosensitive ion channels, which alter their ion pores' opening in response to force, allowing fast electrical and Ca2+ responses. Although GI SMCs express a variety of such ion channels, their identities remain unknown. Recent advancements in electrophysiological, genetic, in vivo imaging, and multi-omic technologies broaden our understanding of how SMC mechano-gated and mechanosensitive ion channels regulate GI functions. This review discusses GI SMC mechanosensitivity's current developments with a particular emphasis on mechano-gated and mechanosensitive ion channels.


Assuntos
Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Miócitos de Músculo Liso/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Motilidade Gastrointestinal/fisiologia , Humanos
10.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G573-G585, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470186

RESUMO

Gastric motility is coordinated by underlying bioelectrical "slow wave" activity. Slow wave dysrhythmias are associated with motility disorders, including gastroparesis, offering an underexplored potential therapeutic target. Although ablation is widely used to treat cardiac arrhythmias, this approach has not yet been trialed for gastric electrical abnormalities. We hypothesized that ablation can create localized conduction blocks and modulate slow wave activation. Radiofrequency ablation was performed on the porcine serosa in vivo, encompassing a range of parameters (55-85°C, adjacent points forming a line, 5-10 s/point). High-resolution electrical mapping (16 × 16 electrodes; 6 × 6 cm) was applied to define baseline and acute postablation activation patterns. Tissue damage was evaluated by hematoxylin and eosin and c-Kit stains. Results demonstrated that RF ablation successfully induced complete conduction block and a full thickness lesion in the muscle layer at energy doses of 65-75°C for 5-10 s/point. Gastric ablation may hold therapeutic potential for gastric electrical abnormalities in the future.NEW & NOTEWORTHY This study presents gastric ablation as a new method for modulating slow wave activation and propagation in vivo, by creating localized electrical conduction blocks in the stomach, validated by high-resolution electrical mapping and histological tissue analysis. The results define the effective energy dose range for creating conduction blocks, while maintaining the mucosal and submucosal integrity, and demonstrate the electrophysiological effects of ablation. In future, gastric ablation can now be translated toward disrupting dysrhythmic slow wave activation.


Assuntos
Relógios Biológicos , Ablação por Cateter , Gastroparesia/cirurgia , Células Intersticiais de Cajal/patologia , Estômago/cirurgia , Animais , Condutividade Elétrica , Feminino , Motilidade Gastrointestinal , Gastroparesia/metabolismo , Gastroparesia/patologia , Gastroparesia/fisiopatologia , Células Intersticiais de Cajal/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Estômago/patologia , Estômago/fisiopatologia , Sus scrofa , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 115(32): E7632-E7641, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30037999

RESUMO

Enterochromaffin (EC) cells constitute the largest population of intestinal epithelial enteroendocrine (EE) cells. EC cells are proposed to be specialized mechanosensory cells that release serotonin in response to epithelial forces, and thereby regulate intestinal fluid secretion. However, it is unknown whether EE and EC cells are directly mechanosensitive, and if so, what the molecular mechanism of their mechanosensitivity is. Consequently, the role of EE and EC cells in gastrointestinal mechanobiology is unclear. Piezo2 mechanosensitive ion channels are important for some specialized epithelial mechanosensors, and they are expressed in mouse and human EC cells. Here, we use EC and EE cell lineage tracing in multiple mouse models to show that Piezo2 is expressed in a subset of murine EE and EC cells, and it is distributed near serotonin vesicles by superresolution microscopy. Mechanical stimulation of a subset of isolated EE cells leads to a rapid inward ionic current, which is diminished by Piezo2 knockdown and channel inhibitors. In these mechanosensitive EE cells force leads to Piezo2-dependent intracellular Ca2+ increase in isolated cells as well as in EE cells within intestinal organoids, and Piezo2-dependent mechanosensitive serotonin release in EC cells. Conditional knockout of intestinal epithelial Piezo2 results in a significant decrease in mechanically stimulated epithelial secretion. This study shows that a subset of primary EE and EC cells is mechanosensitive, uncovers Piezo2 as their primary mechanotransducer, defines the molecular mechanism of their mechanotransduction and mechanosensitive serotonin release, and establishes the role of epithelial Piezo2 mechanosensitive ion channels in regulation of intestinal physiology.


Assuntos
Células Enterocromafins/fisiologia , Canais Iônicos/metabolismo , Jejuno/fisiologia , Mecanotransdução Celular/fisiologia , Serotonina/metabolismo , Animais , Células Cultivadas , Canais Iônicos/genética , Jejuno/citologia , Camundongos , Camundongos Transgênicos , Organoides/fisiologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Análise de Célula Única
12.
Gut ; 69(5): 868-876, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31757880

RESUMO

OBJECTIVE: This study was designed to evaluate the roles of microRNAs (miRNAs) in slow transit constipation (STC). DESIGN: All human tissue samples were from the muscularis externa of the colon. Expression of 372 miRNAs was examined in a discovery cohort of four patients with STC versus three age/sex-matched controls by a quantitative PCR array. Upregulated miRNAs were examined by quantitative reverse transcription qPCR (RT-qPCR) in a validation cohort of seven patients with STC and age/sex-matched controls. The effect of a highly differentially expressed miRNA on a custom human smooth muscle cell line was examined in vitro by RT-qPCR, electrophysiology, traction force microscopy, and ex vivo by lentiviral transduction in rat muscularis externa organotypic cultures. RESULTS: The expression of 13 miRNAs was increased in STC samples. Of those miRNAs, four were predicted to target SCN5A, the gene that encodes the Na+ channel NaV1.5. The expression of SCN5A mRNA was decreased in STC samples. Let-7f significantly decreased Na+ current density in vitro in human smooth muscle cells. In rat muscularis externa organotypic cultures, overexpression of let-7f resulted in reduced frequency and amplitude of contraction. CONCLUSIONS: A small group of miRNAs is upregulated in STC, and many of these miRNAs target the SCN5A-encoded Na+ channel NaV1.5. Within this set, a novel NaV1.5 regulator, let-7f, resulted in decreased NaV1.5 expression, current density and reduced motility of GI smooth muscle. These results suggest NaV1.5 and miRNAs as novel diagnostic and potential therapeutic targets in STC.


Assuntos
Constipação Intestinal/fisiopatologia , Regulação da Expressão Gênica , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Contração Muscular/genética , Adulto , Idoso , Biópsia por Agulha , Estudos de Casos e Controles , Colo/patologia , Feminino , Motilidade Gastrointestinal/genética , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Músculo Liso , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência , Estudos de Amostragem , Regulação para Cima
13.
Gastroenterology ; 157(1): 193-209.e9, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30872106

RESUMO

BACKGROUND & AIMS: Mechanical forces contribute to portal hypertension (PHTN) and fibrogenesis. We investigated the mechanisms by which forces are transduced by liver sinusoidal endothelial cells (LSECs) into pressure and matrix changes. METHODS: We isolated primary LSECs from mice and induced mechanical stretch with a Flexcell device, to recapitulate the pulsatile forces induced by congestion, and performed microarray and RNA-sequencing analyses to identify gene expression patterns associated with stretch. We also performed studies with C57BL/6 mice (controls), mice with deletion of neutrophil elastase (NE-/-) or peptidyl arginine deiminase type IV (Pad4-/-) (enzymes that formation of neutrophil extracellular traps [NETs]), and mice with LSEC-specific deletion of Notch1 (Notch1iΔEC). We performed partial ligation of the suprahepatic inferior vena cava (pIVCL) to simulate congestive hepatopathy-induced portal hypertension in mice; some mice were given subcutaneous injections of sivelestat or underwent bile-duct ligation. Portal pressure was measured using a digital blood pressure analyzer and we performed intravital imaging of livers of mice. RESULTS: Expression of the neutrophil chemoattractant CXCL1 was up-regulated in primary LSECs exposed to mechanical stretch, compared with unexposed cells. Intravital imaging of livers in control mice revealed sinusoidal complexes of neutrophils and platelets and formation of NETs after pIVCL. NE-/- and Pad4-/- mice had lower portal pressure and livers had less fibrin compared with control mice after pIVCL and bile-duct ligation; neutrophil recruitment into sinusoidal lumen of liver might increase portal pressure by promoting sinusoid microthrombi. RNA-sequencing of LSECs identified proteins in mechanosensitive signaling pathways that are altered in response to mechanical stretch, including integrins, Notch1, and calcium signaling pathways. Mechanical stretch of LSECs increased expression of CXCL1 via integrin-dependent activation of transcription factors regulated by Notch and its interaction with the mechanosensitive piezo calcium channel. CONCLUSIONS: In studies of LSECs and knockout mice, we identified mechanosensitive angiocrine signals released by LSECs which promote PHTN by recruiting sinusoidal neutrophils and promoting formation of NETs and microthrombi. Strategies to target these pathways might be developed for treatment of PHTN. RNA-sequencing accession number: GSE119547.


Assuntos
Capilares/metabolismo , Quimiocina CXCL1/metabolismo , Células Endoteliais/metabolismo , Hipertensão Portal/metabolismo , Fígado/irrigação sanguínea , Infiltração de Neutrófilos , Estresse Mecânico , Trombose/metabolismo , Animais , Sinalização do Cálcio , Capilares/citologia , Armadilhas Extracelulares , Hidrolases/genética , Técnicas In Vitro , Integrinas/metabolismo , Elastase de Leucócito/genética , Ligadura , Fígado/metabolismo , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão na Veia Porta , Proteína-Arginina Desiminase do Tipo 4 , Receptor Notch1/genética , Veia Cava Inferior/cirurgia
14.
Am J Physiol Gastrointest Liver Physiol ; 314(4): G494-G503, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167113

RESUMO

The SCN5A-encoded voltage-gated mechanosensitive Na+ channel NaV1.5 is expressed in human gastrointestinal smooth muscle cells and interstitial cells of Cajal. NaV1.5 contributes to smooth muscle electrical slow waves and mechanical sensitivity. In predominantly Caucasian irritable bowel syndrome (IBS) patient cohorts, 2-3% of patients have SCN5A missense mutations that alter NaV1.5 function and may contribute to IBS pathophysiology. In this study we examined a racially and ethnically diverse cohort of IBS patients for SCN5A missense mutations, compared them with IBS-negative controls, and determined the resulting NaV1.5 voltage-dependent and mechanosensitive properties. All SCN5A exons were sequenced from somatic DNA of 252 Rome III IBS patients with diverse ethnic and racial backgrounds. Missense mutations were introduced into wild-type SCN5A by site-directed mutagenesis and cotransfected with green fluorescent protein into HEK-293 cells. NaV1.5 voltage-dependent and mechanosensitive functions were studied by whole cell electrophysiology with and without shear force. Five of 252 (2.0%) IBS patients had six rare SCN5A mutations that were absent in 377 IBS-negative controls. Six of six (100%) IBS-associated NaV1.5 mutations had voltage-dependent gating abnormalities [current density reduction (R225W, R433C, R986Q, and F1293S) and altered voltage dependence (R225W, R433C, R986Q, G1037V, and F1293S)], and at least one kinetic parameter was altered in all mutations. Four of six (67%) IBS-associated SCN5A mutations (R225W, R433C, R986Q, and F1293S) resulted in altered NaV1.5 mechanosensitivity. In this racially and ethnically diverse cohort of IBS patients, we show that 2% of IBS patients harbor SCN5A mutations that are absent in IBS-negative controls and result in NaV1.5 channels with abnormal voltage-dependent and mechanosensitive function. NEW & NOTEWORTHY The voltage-gated Na+ channel NaV1.5 contributes to smooth muscle physiology and electrical slow waves. In a racially and ethnically mixed irritable bowel syndrome cohort, 2% had mutations in the NaV1.5 gene SCN5A. These mutations were absent in irritable bowel syndrome-negative controls. Most mutant NaV1.5 channels were loss of function in voltage dependence or mechanosensitivity.


Assuntos
Trato Gastrointestinal , Síndrome do Intestino Irritável , Miócitos de Músculo Liso/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Adulto , Idoso , Canalopatias/genética , Canalopatias/fisiopatologia , Fenômenos Eletrofisiológicos/genética , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Trato Gastrointestinal/fisiopatologia , Predisposição Genética para Doença , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Técnicas de Patch-Clamp
15.
J Physiol ; 600(11): 2541-2542, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445403
16.
J Physiol ; 595(1): 79-91, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27392819

RESUMO

KEY POINTS: The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT: The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.


Assuntos
Células Enterocromafins/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Linhagem Celular , Humanos , Mucosa Intestinal/fisiologia , Intestino Delgado/fisiologia , Canais Iônicos/genética , Camundongos , Estimulação Física , Pressão , RNA Mensageiro/metabolismo , Serotonina/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 313(1): G80-G87, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408644

RESUMO

Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT3 and 5-HT4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (ΔIsc) in GF compared with HM mice. Additionally, 5-HT3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT3 receptor antagonist, inhibited 5-HT-evoked ΔIsc in GF mice but not in HM mice. Furthermore, a 5-HT3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher ΔIsc in GF compared with HM mice. Immunohistochemistry in 5-HT3A-green fluorescent protein mice localized 5-HT3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked ΔIsc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT3 receptor expression via acetate production. Epithelial 5-HT3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion.NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT3 receptor expression in colonoids.View this article's corresponding video summary at https://www.youtube.com/watch?v=aOMYJMuLTcw&feature=youtu.be.


Assuntos
Acetatos/metabolismo , Colo/microbiologia , Colo/fisiologia , Regulação da Expressão Gênica/fisiologia , Microbiota/fisiologia , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Colo/metabolismo , Vida Livre de Germes , Humanos , Camundongos , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT4 de Serotonina/genética , Receptores 5-HT4 de Serotonina/metabolismo , Serotonina/metabolismo
18.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G572-G579, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28336549

RESUMO

Anoctamin1 (Ano1 and TMEM16A) is a calcium-activated chloride channel specifically expressed in the interstitial cells of Cajal (ICC) of the gastrointestinal tract muscularis propria. Ano1 is necessary for normal electrical slow waves and ICC proliferation. The full-length human Ano1 sequence includes an additional exon, exon "0," at the NH2 terminus. Ano1 with exon 0 [Ano1(0)] had a lower EC50 for intracellular calcium ([Ca2+]i) and faster chloride current (ICl) kinetics. The Ano1 alternative splice variant with segment "c" encoding exon 13 expresses on the first intracellular loop four additional amino acid residues, EAVK, which alter ICl at low [Ca2+]i Exon 13 is expressed in 75-100% of Ano1 transcripts in most human tissues but only 25% in the human stomach. Our aim was to determine the effect of EAVK deletion on Ano1(0)ICl parameters. By voltage-clamp electrophysiology, we examined ICl in HEK293 cells transiently expressing Ano1(0) with or without the EAVK sequence [Ano1(0)ΔEAVK]. The EC50 values of activating and deactivating ICl for [Ca2+]i were 438 ± 7 and 493 ± 9 nM for Ano1(0) but higher for Ano1(0)ΔEAVK at 746 ± 47 and 761 ± 26 nM, respectively. Meanwhile, the EC50 values for the ratio of instantaneous to steady-state ICl were not different between variants. Congruently, the time constant of activation was slower for Ano1(0)ΔEAVK than Ano1(0) currents at intermediate [Ca2+]i These results suggest that EAVK decreases the calcium sensitivity of Ano1(0) current activation and deactivation by slowing activation kinetics. Differential expression of EAVK in the human stomach may function as a switch to increase sensitivity to [Ca2+]i via faster gating of Ano1.NEW & NOTEWORTHY Calcium-activated chloride channel anoctamin1 (Ano1) is necessary for normal slow waves in the gastrointestinal interstitial cells of Cajal. Exon 0 encodes the NH2 terminus of full-length human Ano1 [Ano1(0)], while exon 13 encodes residues EAVK on its first intracellular loop. Splice variants lack EAVK more often in the stomach than other tissues. Ano1(0) without EAVK [Ano1(0)ΔEAVK] has reduced sensitivity for intracellular calcium, attributable to slower kinetics. Differential expression of EAVK may function as a calcium-sensitive switch in the human stomach.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Mucosa Gástrica/metabolismo , Células Intersticiais de Cajal/metabolismo , Proteínas de Neoplasias/metabolismo , Processamento Alternativo , Anoctamina-1 , Canais de Cloreto/química , Canais de Cloreto/genética , Éxons , Células HEK293 , Humanos , Cinética , Potenciais da Membrana , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Domínios Proteicos , Isoformas de Proteínas , Estômago/citologia , Transfecção
19.
Am J Physiol Gastrointest Liver Physiol ; 311(4): G581-G586, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27514480

RESUMO

In the gastrointestinal (GI) tract, abnormalities in secretion, absorption, motility, and sensation have been implicated in functional gastrointestinal disorders (FGIDs). Ion channels play important roles in all these GI functions. Disruptions of ion channels' ability to conduct ions can lead to diseases called ion channelopathies. Channelopathies can result from changes in ion channel biophysical function or expression due to mutations, posttranslational modification, and accessory protein malfunction. Channelopathies are strongly established in the fields of cardiology and neurology, but ion channelopathies are only beginning to be recognized in gastroenterology. In this review, we describe the state of the emerging field of GI ion channelopathies. Several recent discoveries show that channelopathies result in alterations in GI motility, secretion, and sensation. In the epithelium, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) or CFTR-associating proteins result in channelopathies with constipation or diarrhea as phenotypes. In the muscle, mutations in the SCN5A-encoded voltage-gated sodium channel NaV1.5 are associated with irritable bowel syndrome. In the sensory nerves, channelopathies of voltage-gated sodium channels NaV1.7 and NaV1.9 (encoded by SCN9A, SCN11A, respectively) manifest by either GI hyper- or hyposensation. Recent advances in structural biology and ion channel biophysics, coupled with personalized medicine, have fueled rapid discoveries of novel channelopathies and direct drug targeting of specific channelopathies. In summary, the emerging field of GI ion channelopathies has significant implications for functional GI disease stratification, diagnosis, and treatment.


Assuntos
Canalopatias/complicações , Gastroenteropatias/complicações , Canais Iônicos/genética , Animais , Canalopatias/genética , Canalopatias/fisiopatologia , Gastroenteropatias/genética , Gastroenteropatias/fisiopatologia , Humanos , Mucosa Intestinal/fisiopatologia , Músculo Esquelético/fisiopatologia , Mutação
20.
Hepatology ; 61(2): 648-59, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25142214

RESUMO

UNLABELLED: Chronic passive hepatic congestion (congestive hepatopathy) leads to hepatic fibrosis; however, the mechanisms involved in this process are not well understood. We developed a murine experimental model of congestive hepatopathy through partial ligation of the inferior vena cava (pIVCL). C57BL/6 and transgenic mice overexpressing tissue factor pathway inhibitor (SM22α-TFPI) were subjected to pIVCL or sham. Liver and blood samples were collected and analyzed in immunohistochemical, morphometric, real-time polymerase chain reaction, and western blot assays. Hepatic fibrosis and portal pressure were significantly increased after pIVCL concurrent with hepatic stellate cell (HSC) activation. Liver stiffness, as assessed by magnetic resonance elastography, correlated with portal pressure and preceded fibrosis in our model. Hepatic sinusoidal thrombosis as evidenced by fibrin deposition was demonstrated both in mice after pIVCL as well as in humans with congestive hepatopathy. Warfarin treatment and TFPI overexpression both had a protective effect on fibrosis development and HSC activation after pIVCL. In vitro studies show that congestion stimulates HSC fibronectin (FN) fibril assembly through direct effects of thrombi as well as by virtue of mechanical strain. Pretreatment with either Mab13 or Cytochalasin-D, to inhibit ß-integrin or actin polymerization, respectively, significantly reduced fibrin and stretch-induced FN fibril assembly. CONCLUSION: Chronic hepatic congestion leads to sinusoidal thrombosis and strain, which in turn promote hepatic fibrosis. These studies mechanistically link congestive hepatopathy to hepatic fibrosis.


Assuntos
Actinas/metabolismo , Fibrina/metabolismo , Hiperemia/complicações , Cirrose Hepática/etiologia , Trombose/complicações , Adulto , Idoso , Animais , Anticoagulantes , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibronectinas/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Ligadura , Circulação Hepática , Cirrose Hepática/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Veia Cava Inferior , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA