Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 25(6): 535-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24483140

RESUMO

The rapid growth of regenerative medicine and drug delivery fields has generated a strong need for improved polymeric materials that degrade at a controlled rate into safe, non-cytotoxic by-products. Polyurethane thermoplastic elastomers offer several advantages over other polymeric materials including tunable mechanical properties, excellent fatigue strength, and versatile processing. The variable segmental chemistry in developing resorbable polyurethanes also enables fine control over the degradation profile as well as the mechanical properties. Linear aliphatic isocyanates are most commonly used in biodegradable polyurethane formulations; however, these aliphatic polyurethanes do not match the mechanical properties of their aromatic counterparts. In this study, a novel poly(ester urethane) (PEsU) synthesized with biodegradable aromatic isocyanates based on glycolic acid was characterized for potential use as a new resorbable material in medical devices. Infrared spectral analysis confirmed the aromatic and phase-separated nature of the PEsU. Uniaxial tensile testing displayed stress-strain behavior typical of a semi-crystalline polymer above its Tg, in agreement with calorimetric findings. PEsU outperformed aliphatic PCL-based polyurethanes likely due to the enhanced cohesion of the aromatic hard domains. Accelerated degradation of the PEsU using 0.1 M sodium hydroxide resulted in hydrolysis of the polyester soft segment on the surface, reduced molecular weight, surface cracking, and a 30% mass loss after four weeks. Calorimetric studies indicated a disruption of the soft segment crystallinity after incubation which corresponded with a drop in initial modulus of the PEsU. Finally, cytocompatibility testing with 3T3 mouse fibroblasts exhibited cell viability on PEsU films comparable to a commercial poly(ether urethane urea) after 24 h followed by 85% cell viability at 72 h. Overall, this new resorbable polyurethane shows strong potential for use in wide range of biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Uretana/química , Animais , Materiais Biocompatíveis/efeitos adversos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais , Camundongos , Poliésteres/efeitos adversos
2.
Pharm Res ; 23(4): 821-34, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16463009

RESUMO

PURPOSE: A novel absorbable hydrophilic copolyester developed in our laboratory, amorphous 40/60 poly(ethylene diglycolate-co-glycolide), exhibits outstanding physical properties. Films made from this material appear fully transparent, colorless, soft and slightly elastic, but relatively strong and durable materials so that they can be potentially used as stand-alone devices in various in-vivo medical applications. In this study, in-vitro drug release characteristics of this copolyester were examined. METHODS: High Performance Liquid Chromatography was used to generate release profiles on selected non-steroidal anti-inflammatory agents, NSAIDs. In addition, dielectric relaxation spectroscopy, as well as mid- and near infrared spectroscopy, were used to study specific polymer chain interactions in water and buffer solution as a function of aging time at 37 degrees C. RESULTS: This copolyester, compression molded into a film, exhibited nearly constant in-vitro release of various hydrophilic and hydrophobic drugs. The release profile showed minimal or, in most cases, no burst effect. The effect was observed with the three NSAIDs that were tested as model compounds; however, this system may prove generally useful for other drug entities. In-vitro hydrolysis conducted at 37 degrees C on this hydrophilic copolyester revealed an unusually long induction period (no hydrolysis for up to 6 days), followed by the relatively rapid hydrolysis. Data from dipole relaxation spectroscopy indicated that the water molecules do not structurally associate with the polymer chains in phosphate buffer during initial hydrolysis period. CONCLUSIONS: The results suggest unique dynamics of water diffusion through the polymer matrix that may play a critical role in achieving controlled release properties. Furthermore, we suspect that the molecular interactions associated with this new synthetic absorbable material may find a critical utility in important medical applications.


Assuntos
Preparações de Ação Retardada/química , Excipientes/química , Polietilenos/química , Ácido Poliglicólico/química , Absorção , Anti-Inflamatórios não Esteroides/química , Diclofenaco/química , Hidrólise , Indicadores e Reagentes , Indometacina/química , Cetoprofeno/química , Ácido Láctico/química , Lactonas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA