RESUMO
Papaya ringspot virus (PRSV) is a plant virus transmitted by aphids that has spread throughout many countries, including Malaysia, causing yield losses and economic impacts to the papaya industry worldwide. PRSV infection in papaya-distinctive ring-shaped patterns on papaya leaves resulted in stunted growth and reduced fruit quality. Management strategies such as the use of resistant varieties, cultural practices, and vector control are employed to mitigate the spread of PRSV. However, the evolution of new virus strains and the uncertainties posed by climate change pose ongoing challenges for the management of PRSV worldwide. Therefore, in this present study, we aim to confirm the presence of PRSV in symptomatic papaya leaves, to depict the current status of PRSV in Malaysia. Using reverse-transcription PCR (RT-PCR) targeting PRSV partial nuclear inclusion b protein (NIb) and coat protein (CP), 13 out of 40 papaya leaves collected were found positive for the PRSV strain-P (PRSV-P). Nucleotide analysis revealed a high similarity with strains from Taiwan and India, showing 96.83%, 97.03%, and 97.03% identity with the Taiwan strains (DQ340771, AY027810) and the India strain (KJ755852), respectively. Compared to the CP gene of Malaysian isolates reported in 2016 (EU082207), several nonsynonymous mutations have been discovered suggesting genetic diversity within the PRSV population in Malaysia. Overall, this study confirms the current circulation of PRSV infection in Malaysia since it was first identified in Johore in 1991. The re-occurrence of PRSV-P in this study highlights the need for continuous monitoring and targeted management strategies to prevent the further spread of PRSV-P in Malaysia.
Assuntos
Proteínas do Capsídeo , Carica , Variação Genética , Doenças das Plantas , Potyvirus , Malásia , Potyvirus/genética , Carica/virologia , Carica/genética , Proteínas do Capsídeo/genética , Doenças das Plantas/virologia , Filogenia , Folhas de Planta/virologiaRESUMO
BACKGROUND: Rattus rattus are the main carriers of various zoonotic diseases including leptospirosis. Regrettably, information underlying the cytokine response of wild R. rattus upon leptospirosis infection is lacking. This study aims to understand the immune response presented by specifically the kidney and liver of R. rattus during leptospirosis infection. METHODOLOGY: High-throughput RNA-Sequencing technology was employed to discover the transcriptome alterations in the kidney and liver of R. rattus during natural infection. Both kidney and liver tissues from the healthy and infected rats were sequenced using the BGISEQ-500 sequencing platform. The GO and KEGG databases were utilized to functionally annotate the differentially expressed transcripts of the selected cytokines; TNF-α, IL-1ß, IL-6, IL-10, MIP-1α, and IFN-γ. RESULTS: A higher number of upregulated genes were signified in the kidney as compared to the liver during infection. Among the six selected cytokines, Interleukin-6 was found to be expressed during the early stage in the liver of R. rattus, while all the other six genes were upregulated during the late stage of leptospirosis in the kidney of R. rattus. The GO of the annotated genes was classified under inflammatory response and cellular response to lipopolysaccharide, while the KEGG pathway indicated cytokine-cytokine receptor interaction and the Toll-like receptor (TLR) signalling pathway. The upshots of this study correlated the different phases of cytokine response in different organs of R. rattus during leptospirosis infection. CONCLUSION: Overall, these studies formulate a conceptual framework based on host and pathogen relationships of leptospirosis transmission patterns and the discovery of biomarkers in tracking the early stages of leptospires colonization.
RESUMO
Blastocystis sp. is an enteric protistan parasite that affects individuals worldwide with gastrointestinal symptoms such as abdominal discomfort, diarrhea, and flatulence. However, its pathogenicity is controversial due to its presence among asymptomatic individuals. Blastocystis sp. subtype 3 (ST3) is the most prevalent subtype among humans that have been associated with irritable bowel syndrome (IBS), Crohn's disease, ulcerative colitis, and colorectal cancer. Axenization of the parasite has been shown to impede its growth thus revealing the importance of accompanying bacteria in ensuring Blastocystis sp. survival. This study aims to identify the influence of accompanying bacteria on the growth of Blastocystis sp. ST3. Blastocystis sp. cultures were treated with Meropenem, Vancomycin, and Amoxicillin-Clavulanic acid (Augmentin). Bacteria-containing supernatant of antibiotic-treated and control cultures were isolated and identified through 16 s rRNA sequencing. Morphological changes of antibiotic-treated Blastocystis sp. ST3 were also observed. The cultures treated with meropenem and augmentin exhibited opposing effects with reduced growth of isolates from symptomatic patients and a significant increase in asymptomatic isolates. Whereas, vancomycin-treated cultures had no difference in the growth of Blastocystis sp. ST3 isolates from symptomatic and asymptomatic patients. Isolates from symptomatic and asymtomatic patients had 6 and 2 distinct bacterial species identified with Proteus mirabilis as the common bacteria among both types of isolates. Morphologically, Blastocystis sp. ST3 cultures exposed to meropenem and augmentin demonstrated an increase in pre-cystic forms. These findings demonstrate the effects of accompanying bacteria on the growth of Blastocystis sp. ST3 that could translate into clinical manifestations observed among Blastocystis sp.-infected patients.
Assuntos
Infecções por Blastocystis , Blastocystis , Humanos , Infecções por Blastocystis/parasitologia , Vancomicina , Meropeném , Combinação Amoxicilina e Clavulanato de Potássio , Antibacterianos/farmacologia , Fezes/parasitologiaRESUMO
An infectious disease is the most apprehensive problem in aquaculture as it can lead to high mortality in aquatic organisms and massive economic loss. Even though significant progress has been accomplished in therapeutic, prevention, and diagnostic using several potential technologies, more robust inventions and breakthroughs should be achieved to control the spread of infectious diseases. MicroRNA (miRNA) is an endogenous small non-coding RNA that post-transcriptionally regulates the protein-coding genes. It involves various biological regulatory mechanisms in organisms such as cell differentiation, proliferation, immune responses, development, apoptosis, and others. Furthermore, an miRNA also acts as a mediator to either regulate host responses or enhance the replication of diseases during infection. Therefore, the emergence of miRNAs could be potential candidates for the establishment of diagnostic tools for numerous infectious diseases. Interestingly, studies have revealed that miRNAs can be used as biomarkers and biosensors to detect diseases, and can also be used to design vaccines to attenuate pathogens. This review provides an overview of miRNA biogenesis and specifically focuses on its regulation during infection in aquatic organisms, especially on the host immune responses and how miRNAs enhance the replication of pathogens in the organism. In addition to that, we explored the potential applications, including diagnostic methods and treatments, that can be employed in the aquaculture industry.
Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis , MicroRNAs , Humanos , MicroRNAs/genética , Aquicultura , Organismos AquáticosRESUMO
Rats (Rattus species) are the most notorious vertebrate pests in Malaysian oil palm plantations. Although many studies have been conducted on Asian rats, little attention has been paid to their species composition and phylogenetic relationships in oil palm plantations in Peninsular Malaysia. We determined the mitochondrial cytochrome oxidase subunit I (COI) gene sequence (708 bp) for 216 individual rats collected from five oil palm plantations in Peninsular Malaysia. Phylogenetic analysis in conjunction with comparison with sequences from the nucleotide sequence database revealed five distinct lineages in the Malaysian oil plantations: Rattus tiomanicus, Rattus argentiventer, Rattus exulans, Rattus tanezumi, and a taxon corresponding to the Malayan house rat, which was most frequently observed (â¼50%). The last taxon has traditionally been classified as a synonym of Rattus rattus (Rattus rattus diardii) or Rattus tanezumi, but our phylogenetic analysis placed it as an independent lineage, which is not particularly closely related to R. rattus or R. tanezumi, and which we refer to as Rattus diardii. The construction of the network showed that there is considerable genetic variation within the lineages of R. diardii and R tiomanicus, suggesting that these two species are native to the Malay Peninsula.
Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Genes Mitocondriais , Ratos , Animais , Filogenia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Malásia , Variação GenéticaRESUMO
Invasive alien fish species have become a silent treat towards the ecosystem especially the native fish population in Malaysia. There has been a need to develop rapid identification methods that can aid management teams in identifying fish species that are not native to our ecosystem. Current visual identification methods are highly tedious and require time, delaying action towards curbing the invasion. The LAMP assay successfully identified six popular invasive fish species in Malaysia. None of the LAMP assays showed false positives and the Limit of Detection of the LAMP primers were highly sensitive and could detect DNA samples up to 1 × 10-15 ng/µl. The LAMP primers designed were highly specific to the target species and did not amplify non target species. DNA sequencing was done to ensure the accuracy of LAMP assay results. This study demonstrates that LAMP is a suitable tool in species identification efforts of invasive fish species in Malaysia.
Assuntos
Peixes/genética , Água Doce , Espécies Introduzidas , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Malásia , Transiluminação , Raios UltravioletaRESUMO
Global shrimp aquaculture farmers have suffered major economic losses due to disease outbreaks. A notable shrimp disease is Acute Hepatopancreatic Necrosis Disease (AHPND), which is caused by a new strain of Vibrio parahaemolyticus bacteria (VpAHPND) that mainly inhabits the shrimp gut and damages the hepatopancreas. Fewer studies have investigated whether this disease will affect shrimp muscle functioning or cause any muscle damage. We challenged Penaeus monodon shrimp with VpAHPND bacteria using an immersion method. Expression of Dystrophin gene, an important regulatory gene for maintenance of muscle integrity, was quantified from muscle samples using qRT-PCR. Additional verification was conducted by determining calcium concentration and bta-miR-4286 and dre-miR-107b miRNAs expression. P. monodon dystrophin gene demonstrated the highest expression level during AHPND infection when muscle calcium concentration was detected at its lowest level at 6 h post-infection (hpi). The highest muscle calcium concentration, determined at 36 hpi, was supported by higher bta-miR-4286 miRNA expression and lower dre-miR-107b miRNA expression in VpAHPND-infected samples compared to uninfected samples at the same time point. We deduced an interactive relationship between dystrophin gene expression, calcium concentration, and miRNA expression in P. monodon muscle tissues triggered by the invading VpAHPND bacterium.
Assuntos
Cálcio/metabolismo , Expressão Gênica , MicroRNAs/metabolismo , Penaeidae/fisiologia , Vibrio parahaemolyticus/fisiologia , Animais , Músculos/microbiologia , Músculos/fisiologia , Penaeidae/microbiologiaRESUMO
Blastocystis sp. is known to be the most commonly found intestinal protozoan parasite in human fecal surveys and has been incriminated to cause diarrhea and abdominal bloating. Binary fission has been widely accepted as the plausible mode of reproduction for this parasite. The present study demonstrates that subjecting the parasites in vitro to higher temperature shows the proliferation of parasite numbers in cultures. Transmission electron microscopy was used to compare the morphology of Blastocystis sp. subtype 3 isolated from a dengue patient having high fever (in vivo thermal stress) and Blastocystis sp. 3 maintained at 41 °C (in vitro thermal stress) and 37 °C (control). Fluorescence stains like acridine orange (AO) and 4',6'-diamino-2-phenylindole (DAPI) were used to demonstrate the viability and nuclear content of the parasite for both the in vitro and in vivo thermal stress groups of parasites. Blastocystis sp. at 37 °C was found to be mostly vacuolar whereas the in vitro thermal stressed isolates at 41 °C were granular with electron dense material seen to protect the granules within the central body. Parasites of the in vivo thermal stressed group showed similar ultrastructure as the in vitro ones. AO and DAPI staining provided evidence that these granules are viable which develop into progenies of Blastocystis sp. These granular forms were then observed to rupture and release progenies from the mother cells whilst the peripheral cytoplasmic walls were seen to degrade. Upon exposure to high temperature both in vitro and in vivo, Blastocystis sp. in cultures show higher number of granular forms seen to be protected by the electron dense material within the central body possibly acting as a protective mechanism. This is possibly to ensure the ability to survive for the granules to be developed as viable progenies for release into the host system.
Assuntos
Blastocystis/fisiologia , Resposta ao Choque Térmico , Laranja de Acridina , Adulto , Animais , Blastocystis/isolamento & purificação , Blastocystis/ultraestrutura , Infecções por Blastocystis/parasitologia , Proliferação de Células , Dengue/parasitologia , Diarreia/parasitologia , Fezes/parasitologia , Humanos , Indóis , Microscopia Eletrônica de Transmissão , ReproduçãoRESUMO
The world production of shrimp such as the Malaysian giant freshwater prawn, Macrobrachium rosenbergii is seriously affected by the white spot syndrome virus (WSSV). There is an urgent need to understand the host pathogen interaction between M. rosenbergii and WSSV which will be able to provide a solution in controlling the spread of this infectious disease and lastly save the aquaculture industry. Now, using Next Generation Sequencing (NGS), we will be able to capture the response of the M. rosenbergii to the pathogen and have a better understanding of the host defence mechanism. Two cDNA libraries, one of WSSV-challenged M. rosenbergii and a normal control one, were sequenced using the Illumina HiSeq™ 2000 platform. After de novo assembly and clustering of the unigenes from both libraries, 63,584 standard unigenes were generated with a mean size of 698bp and an N50 of 1137bp. We successfully annotated 35.31% of all unigenes by using BLASTX program (E-value <10-5) against NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genome pathway (KEGG) and Orthologous Groups of proteins (COG) databases. Gene Ontology (GO) assessment was conducted using BLAST2GO software. Differentially expressed genes (DEGs) by using the FPKM method showed 8443 host genes were significantly up-regulated whereas 5973 genes were significantly down-regulated. The differentially expressed immune related genes were grouped into 15 animal immune functions. The present study showed that WSSV infection has a significant impact on the transcriptome profile of M. rosenbergii's hepatopancreas, and further enhanced the knowledge of this host-virus interaction. Furthermore, the high number of transcripts generated in this study will provide a platform for future genomic research on freshwater prawns.
Assuntos
Infecções por Vírus de DNA/veterinária , Hepatopâncreas/imunologia , Palaemonidae/virologia , Vírus da Síndrome da Mancha Branca 1 , Animais , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Palaemonidae/genética , Palaemonidae/imunologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , TranscriptomaRESUMO
White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80â% of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.
Assuntos
Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Nodaviridae/genética , Proteínas de Ligação a RNA/genética , Montagem de Vírus/genética , Sequência de Aminoácidos , Animais , Capsídeo/virologia , Proteínas do Capsídeo/metabolismo , Doenças dos Peixes , Palaemonidae/classificação , Palaemonidae/virologia , Mutação Puntual/genética , Estrutura Terciária de Proteína , Infecções por Vírus de RNA , RNA Viral/genética , Deleção de Sequência/genéticaRESUMO
Identification of edible mushrooms particularly Pleurotus genus has been restricted due to various obstacles. The present study attempted to use the combination of two variable regions of IGS1 and ITS for classifying the economically cultivated Pleurotus species. Integration of the two regions proved a high ability that not only could clearly distinguish the species but also served sufficient intraspecies variation. Phylogenetic tree (IGS1+ITS) showed seven distinct clades, each clade belonging to a separate species group. Moreover, the species differentiation was tested by AMOVA and the results were reconfirmed by presenting appropriate amounts of divergence (91.82% among and 8.18% within the species). In spite of achieving a proper classification of species by combination of IGS1 and ITS sequences, the phylogenetic tree showed the misclassification of the species of P. nebrodensis and P. eryngii var. ferulae with other strains of P. eryngii. However, the constructed median joining (MJ) network could not only differentiate between these species but also offer a profound perception of the species' evolutionary process. Eventually, due to the sufficient variation among and within species, distinct sequences, simple amplification, and location between ideal conserved ribosomal genes, the integration of IGS1 and ITS sequences is recommended as a desirable DNA barcode.
Assuntos
Evolução Molecular , Filogenia , Pleurotus/classificação , Pleurotus/genética , Sítios de Ligação/fisiologia , Pleurotus/metabolismo , Especificidade da EspécieRESUMO
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 µg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
RESUMO
Crustin (MrCrs) was sequenced from a freshwater prawn Macrobrachium rosenbergii. The MrCrs protein contains a signal peptide region at N-terminus between 1 and 22 and a long whey acidic protein domain (WAP domain) at C-terminus between 57 and 110 along with a WAP-type 'four-disulfide core' motif. Phylogenetic results show that MrCrs is clustered together with other crustacean crustin groups. MrCrs showed high sequence similarity (77%) with crustin from Pacific white shrimp Litopenaeus vannamei and Japanese spiny lobster Panulirus japonicas. I-TASSER uses the best structure templates to predict the possible structures of MrCrs along with PDB IDs such as 2RELA and 1FLEI. The gene expressions of MrCrs in both healthy M. rosenbergii and those infected with virus including infectious hypodermal and hematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) and bacteria Aeromonas hydrophila (Gram-negative) and Enterococcus faecium (Gram-positive) were examined using quantitative real time PCR. To understand its biological activity, the recombinant MrCrs gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCrs protein agglutinated with the bacteria considered for analysis at a concentration of 25 µg/ml, except Lactococcus lactis. The bactericidal results showed that the recombinant MrCrs protein destroyed all the bacteria after incubation, even less than 6 h. These results suggest that MrCrs is a potential antimicrobial peptide, which is involved in the defense system of M. rosenbergii against viral and bacterial infections.
Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Palaemonidae/genética , Palaemonidae/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Artrópodes/química , Sequência de Bases , DNA Complementar/genética , Densovirinae/fisiologia , Enterococcus faecium/fisiologia , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Dados de Sequência Molecular , Fases de Leitura Aberta , Especificidade de Órgãos , Palaemonidae/microbiologia , Palaemonidae/virologia , Filogenia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Alinhamento de Sequência/veterinária , Vírus da Síndrome da Mancha Branca 1/fisiologiaRESUMO
MicroRNAs (miRNAs) are ~20-22 nucleotides, non protein-coding RNA regulatory genes that post-transcriptionally regulate many protein-coding genes, influencing critical biological and metabolic processes. While the number of known microRNA is increasing, there is currently no published data for miRNA from giant freshwater prawns, Macrobrachium rosenbergii (M. rosenbergii), a commercially cultured and economically important food species. In this study, we identified novel miRNAs in the gill and hepatopancreas of M. rosenbergii. Through a deep parallel sequencing analysis and an in silico data analysis approach, 327 miRNA families were identified from small RNA libraries with reference to both the de novo transcriptome of M. rosenbergii obtained from RNA-Seq and to miRBase (Release 18.0, November 2012). Based on the identified mature miRNA and recovered precursor sequences that form appropriate hairpin structures, three conserved miRNA (miR125, miR750, miR993) and 27 novel miRNA candidates encoding messenger-like non-coding RNA were identified. miR-125, miR-750, G-m0002/H-m0009, G-m0005, G-m0008/H-m0016, G-m0011/H-m0027 and G-m0015 were selected for experimental validation with stem-loop quantitative RT-PCR and were found to be coherent with the expression profile of deep sequencing data as evaluated with Pearson's correlation coefficient (r = 0.835178 for miRNA in gill, r = 0.724131 for miRNA in hepatopancreas). Using a combinatorial approach of pathway enrichment analysis and inverse expression relationship of miRNA and mRNA, four co-expressed novel miRNA candidates (G-m0005, G-m0008/H-m0016, G-m0011/H-m0027, and G-m0015) were found to be associated with energy metabolism. In addition, the expression of the three novel miRNA candidates (G-m0005, G-m0008/H-m0016, and G-m0011/H-m0027) were also found to be significantly reduced at 9 and 24 h post infection in M. rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus, suggesting a functional role of these miRNAs in crustacean immune defense.
Assuntos
MicroRNAs/genética , Palaemonidae/genética , Transcriptoma , Animais , Sequência de Bases , Regulação da Expressão Gênica , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Palaemonidae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de SequênciaRESUMO
Tectonic movements, climatic oscillations, and marine transgressions during the Cenozoic have had a dramatic effect on the biota of the tropical rain forest. This study aims to reveal the phylogeography and evolutionary history of a Peninsular Malaysian endemic tropical timber species, Neobalanocarpus heimii (Dipterocarpaceae). A total of 32 natural populations of N. heimii, with 8 samples from each population were investigated. Fifteen haplotypes were identified from five noncoding chloroplast DNA (cpDNA) regions. Overall, two major genealogical cpDNA lineages of N. heimii were elucidated: a widespread southern and a northern region. The species is predicted to have survived in multiple refugia during climatic oscillations: the northwestern region (R1), the northeastern region (R2), and the southern region (R3). These putative glacial refugia exhibited higher levels of genetic diversity, population differentiation, and the presence of unique haplotypes. Recolonization of refugia R1 and R2 could have first expanded into the northern region and migrated both northeastwards and northwestwards. Meanwhile, recolonization of N. heimii throughout the southern region could have commenced from refugia R3 and migrated toward the northeast and northwest, respectively. The populations of Tersang, Pasir Raja, and Rotan Tunggal exhibited remarkably high haplotype diversity, which could have been the contact zones that have received an admixture of gene pools from the northerly and also southerly regions. As a whole, the populations of N. heimii derived from glacial refugia and contact zones should be considered in the conservation strategies in order to safeguard the long-term survival of the species.
Assuntos
Evolução Biológica , Demografia , Dipterocarpaceae/genética , Variação Genética , Filogenia , Sequência de Bases , DNA de Cloroplastos/genética , Geografia , Haplótipos/genética , Malásia , Dados de Sequência Molecular , Filogeografia , Dinâmica Populacional , Análise de Sequência de DNARESUMO
Conservation is imperative for the Asian snakeheads Channa striata, as the species has been overfished due to its high market demand. Using maternal markers (mitochondrial cytochrome c oxidase subunit 1 gene (COI)), we discovered that evolutionary forces that drove population divergence did not show any match between the genetic and morphological divergence pattern. However, there is evidence of incomplete divergence patterns between the Borneo population and the populations from Peninsular Malaysia. This supports the claim of historical coalescence of C. striata during Pleistocene glaciations. Ecological heterogeneity caused high phenotypic variance and was not correlated with genetic variance among the populations. Spatial conservation assessments are required to manage different stock units. Results on DNA barcoding show no evidence of cryptic species in C. striata in Malaysia. The newly obtained sequences add to the database of freshwater fish DNA barcodes and in future will provide information relevant to identification of species.
Assuntos
Peixes/classificação , Animais , Sequência de Bases , Primers do DNA , Complexo IV da Cadeia de Transporte de Elétrons/genética , Peixes/genética , Marcadores Genéticos , Malásia , Reação em Cadeia da Polimerase , Especificidade da EspécieRESUMO
In recent years, shrimp aquaculture industry had grown significantly to become the major source of global shrimp production. Despite that, shrimp aquaculture production was impeded by various shrimp diseases over the past decades. Interestingly, different shrimp species demonstrated variable levels of immune strength and survival (immune-survival) ability towards different diseases, especially the much stronger immune-survival ability shown by the ancient shrimp species, Macrobrachium rosenbergii compared to other shrimp species. In this study, two important shrimp species, M. rosenbergii and Penaeus monodon (disease tolerant strain) (uninfected control and VpAHPND-infected) were compared to uncover the potential underlying genetic factors. The shrimp species were sampled, followed by RNA extraction and cDNA conversion. Five important immune-survival genes (C-type Lectin, HMGB, STAT, ALF3, and ATPase 8/6) were selected for PCR, sequencing, and subsequent genetics analysis. The overall genetic analyses conducted, including Analysis of Molecular Variance (AMOVA) and population differentiation, showed significant genetic differentiation (p<0.05) between different genes of M. rosenbergii and P. monodon. There was greater genetic divergence identified between HMGB subgroups of P. monodon (uninfected control and VpAHPND-infected) compared to other genes. Besides that, based on neutrality tests conducted, purifying selection was determined to be the main evolutionary driving force of M. rosenbergii and P. monodon with stronger purifying selection exhibited in M. rosenbergii genes. Potential balancing selection was identified for VpAHPND-infected HMGB subgroup whereas directional selection was detected for HMGB (both species) and ATPase 8/6 (only P. monodon) genes. The divergence times between M. rosenbergii and P. monodon genes were estimated through Bayesian molecular clock analysis, which were 438.6 mya (C-type Lectin), 1885.4 mya (HMGB), 432.6 mya (STAT), 448.1 mya (ALF3), and 426.4 mya (ATPase 8/6) respectively. In conclusion, important selection forces and evolutionary divergence information of immune-survival genes between M. rosenbergii and P. monodon were successfully identified.
Assuntos
Evolução Biológica , Penaeidae , Animais , Teorema de Bayes , Lectinas Tipo C/genética , Adenosina Trifosfatases/genética , Proteínas HMGB , Penaeidae/genéticaRESUMO
The emergence of disease in shrimp has governed much concern in food safety and security among consumers with the recent reports on hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP). The microsporidians present in shrimp remain a silent pathogen that prevents optimal shrimp growth. However, the biggest threat is in its food safety concerns, which is the primary focus in ensuring food biosecurity and biosafety. Hence, the objective of this review is to summarise the current knowledge of EHP and its infection in shrimp with food safety concerns. This paper provides an analysis of the diagnostic methods for detecting EHP infections in shrimp aquaculture. Interventions with current molecular biology and biotechnology would be the second approach to addressing EHP diseases. Finally, a systematic guideline for shrimp food safety using diagnostic and intervention is proposed. Thus, this review was aimed to shed light on effective methods for the diagnosis and prevention of EHP infection in shrimp. We also include information on molecular and genomics tools as well as innate immune biomolecules as future targets in the intervention strategies on the microsporidsosis life cycle in shrimp and its environment. Overall, this will result in reduced disease outbreaks in shrimp aquaculture, ensuring the shrimp food safety in the future.
RESUMO
This study is conducted to identify the microbial architecture and its functional capacity in the Asian population via the whole metagenomics approach. A brief comparison of the Asian countries namely Malaysia, India, China, and Thailand, was conducted, giving a total of 916 taxa under observation. Results show a close representation of the taxonomic diversity in the gut microbiota of Malaysia, India, and China, where Bacteroidetes, Firmicutes, and Actinobacteria were more predominant compared to other phyla. Mainly due to the multi-racial population in Malaysia, which also consists of Malays, Indian, and Chinese, the population tend to share similar dietary preferences, culture, and lifestyle, which are major influences that shapes the structure of the gut microbiota. Moreover, Thailand showed a more distinct diversity in the gut microbiota which was highly dominated by Firmicutes. Meanwhile, functional profiles show 1034 gene families that are common between the four countries. The Malaysia samples are having the most unique gene families with a total of 67,517 gene families, and 51 unique KEGG Orthologs, mainly dominated by the metabolic pathways, followed by microbial metabolism in diverse environments. In conclusion, this study provides some general overview on the structure of the Asian gut microbiota, with some additional highlights on the Malaysian population. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03671-3.
RESUMO
In this study, we reported a full length of catalase gene (designated as MrCat), identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrCat is 2504 base pairs in length, and encodes 516 amino acids. The MrCat protein contains three domains such as catalase 1 (catalase proximal heme-ligand signature) at 350-358, catalase 2 (catalase proximal active site signature) at 60-76 and catalase 3 (catalase family profile) at 20-499. The mRNA expressions of MrCat in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). The MrCat is highly expressed in digestive tract and all the other tissues (walking leg, gills, muscle, hemocyte, hepatopancreas, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated in digestive tract after IHHNV challenge. To understand its biological activity, the recombinant MrCat gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCat existed in high thermal stability and broad spectrum of pH, which showed over 95% enzyme activity between pH 5 and 10.5, and was stable from 40 °C to 70 °C, and exhibited 85-100% enzyme activity from 30 °C to 40 °C.