Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 30(2): 836-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26514165

RESUMO

How an animal matches feeding to food availability is a key question for energy homeostasis. We addressed this in the nematode Caenorhabditis elegans, which couples feeding to the presence of its food (bacteria) by regulating pharyngeal activity (pumping). We scored pumping in the presence of food and over an extended time course of food deprivation in wild-type and mutant worms to determine the neural substrates of adaptive behavior. Removal of food initially suppressed pumping but after 2 h this was accompanied by intermittent periods of high activity. We show pumping is fine-tuned by context-specific neural mechanisms and highlight a key role for inhibitory glutamatergic and excitatory cholinergic/peptidergic drives in the absence of food. Additionally, the synaptic protein UNC-31 [calcium-activated protein for secretion (CAPS)] acts through an inhibitory pathway not explained by previously identified contributions of UNC-31/CAPS to neuropeptide or glutamate transmission. Pumping was unaffected by laser ablation of connectivity between the pharyngeal and central nervous system indicating signals are either humoral or intrinsic to the enteric system. This framework in which control is mediated through finely tuned excitatory and inhibitory drives resonates with mammalian hypothalamic control of feeding and suggests that fundamental regulation of this basic animal behavior may be conserved through evolution from nematode to human.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Comportamento Alimentar/fisiologia , Ácido Glutâmico/metabolismo , Neuropeptídeos/metabolismo , Transmissão Sináptica/fisiologia , Animais , Humanos
2.
Proc Natl Acad Sci U S A ; 108(31): 12887-92, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768378

RESUMO

Caenorhabditis elegans exhibits a diverse range of behaviors in response to bacteria. The presence of bacterial food influences C. elegans aerotaxis, aggregation, locomotion, and pathogen avoidance behaviors through the activity of the NPR-1 neuropeptide receptor. Here, we show that mucoid strains of bacteria that produce an exopolysaccharide matrix do not induce NPR-1-dependent behaviors. In the presence of mucoid strains of bacteria, the C. elegans laboratory wild-type (WT) strain N2 exhibits behaviors characteristic of wild isolates and mutants with reduced NPR-1 activity. Specifically, N2 exhibits lawn bordering and roaming behavior on mucoid nonpathogenic bacteria and loss of pathogen avoidance on mucoid Pseudomonas aeruginosa. Alginate biosynthesis by laboratory and clinical isolates of mucoid P. aeruginosa is necessary and sufficient to attenuate NPR-1-mediated behavior and it suppresses C. elegans pathogen avoidance behavior. Our data suggest that the specific interaction with nonmucoid bacteria induces NPR-1-dependent behaviors of C. elegans. These observations provide an example of how exopolysaccharide matrix biosynthesis by a community of bacteria may inhibit specific host responses to microbes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Pseudomonas aeruginosa/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Alginatos/metabolismo , Animais , Animais Geneticamente Modificados , Burkholderia cepacia/metabolismo , Burkholderia cepacia/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Ácido Glucurônico/metabolismo , Guanilato Ciclase/genética , Ácidos Hexurônicos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Locomoção/genética , Locomoção/fisiologia , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/genética , Oxigênio/metabolismo , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Receptores de Neuropeptídeo Y/genética , Especificidade da Espécie , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório/genética
3.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37214966

RESUMO

Neuroscientists rely on targeted perturbations and lesions to causally map functions in the brain1. Yet, since the brain is highly interconnected, manipulation of one area can impact behavior through indirect effects on many other brain regions, complicating the interpretation of such results2,3. On the other hand, the often-observed recovery of behavior performance after lesion can cast doubt on whether the lesioned area was ever directly involved4,5. Recent studies have highlighted how the results of acute and irreversible inactivation can directly conflict4-6, making it unclear whether a brain area is instructive or merely permissive in a specific brain function. To overcome this challenge, we developed a three-stage optogenetic approach which leverages the ability to precisely control the temporal period of regional inactivation with either brief or sustained illumination. Using a visual detection task, we found that acute optogenetic inactivation of the primary visual cortex (V1) suppressed task performance if cortical inactivation was intermittent across trials within each behavioral session. However, when we inactivated V1 for entire behavioral sessions, animals quickly recovered performance in just one to two days. Most importantly, after returning these recovered animals to intermittent cortical inactivation, they quickly reverted to failing on optogenetic inactivation trials. These data support a revised model where the cortex is the default circuit that instructs perceptual performance in basic sensory tasks. More generally, this novel, temporally controllable optogenetic perturbation paradigm can be broadly applied to brain circuits and specific cell types to assess whether they are instructive or merely permissive in a brain function or behavior.

4.
Elife ; 102021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34212858

RESUMO

Neural control of muscle function is fundamental to animal behavior. Many muscles can generate multiple distinct behaviors. Nonetheless, individual muscle cells are generally regarded as the smallest units of motor control. We report that muscle cells can alter behavior by contracting subcellularly. We previously discovered that noxious tastes reverse the net flow of particles through the C. elegans pharynx, a neuromuscular pump, resulting in spitting. We now show that spitting results from the subcellular contraction of the anterior region of the pm3 muscle cell. Subcellularly localized calcium increases accompany this contraction. Spitting is controlled by an 'hourglass' circuit motif: parallel neural pathways converge onto a single motor neuron that differentially controls multiple muscles and the critical subcellular muscle compartment. We conclude that subcellular muscle units enable modulatory motor control and propose that subcellular muscle contraction is a fundamental mechanism by which neurons can reshape behavior.


Assuntos
Sinalização do Cálcio/fisiologia , Células Musculares/fisiologia , Contração Muscular/fisiologia , Animais , Fenômenos Bioquímicos , Caenorhabditis elegans , Cálcio/metabolismo , Luz , Neurônios Motores/fisiologia , Vias Neurais , Faringe
5.
Neuron ; 85(4): 804-18, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25640076

RESUMO

While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. Light can generate hydrogen peroxide, and we discovered that hydrogen peroxide similarly inhibits feeding. The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide.


Assuntos
Proteínas de Drosophila/metabolismo , Comportamento Alimentar , Peróxido de Hidrogênio/farmacologia , Luz , Neurônios , Oxidantes/farmacologia , Faringe/citologia , Receptores de Superfície Celular/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Relação Dose-Resposta à Radiação , Proteínas de Drosophila/genética , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Comportamento Alimentar/efeitos da radiação , Terapia a Laser , Locomoção/efeitos dos fármacos , Locomoção/efeitos da radiação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Optogenética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Tempo de Reação/efeitos dos fármacos , Receptores de Superfície Celular/genética
6.
Curr Biol ; 25(16): 2075-89, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26212880

RESUMO

Neural circuits have long been known to modulate myogenic muscles such as the heart, yet a mechanistic understanding at the cellular and molecular levels remains limited. We studied how light inhibits pumping of the Caenorhabditis elegans pharynx, a myogenic muscular pump for feeding, and found three neural circuits that alter pumping. First, light inhibits pumping via the I2 neuron monosynaptic circuit. Our electron microscopic reconstruction of the anterior pharynx revealed evidence for synapses from I2 onto muscle that were missing from the published connectome, and we show that these "missed synapses" are likely functional. Second, light inhibits pumping through the RIP-I1-MC neuron polysynaptic circuit, in which an inhibitory signal is likely transmitted from outside the pharynx into the pharynx in a manner analogous to how the mammalian autonomic nervous system controls the heart. Third, light causes a novel pharyngeal behavior, reversal of flow or "spitting," which is induced by the M1 neuron. These three neural circuits show that neurons can control a myogenic muscle organ not only by changing the contraction rate but also by altering the functional consequences of the contraction itself, transforming swallowing into spitting. Our observations also illustrate why connectome builders and users should be cognizant that functional synaptic connections might exist despite the absence of a declared synapse in the connectome.


Assuntos
Caenorhabditis elegans/fisiologia , Animais , Caenorhabditis elegans/ultraestrutura , Comportamento Alimentar , Microscopia Eletrônica de Transmissão , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Músculos/fisiologia , Músculos/ultraestrutura , Faringe/fisiologia , Faringe/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura
7.
Science ; 341(6145): 554-8, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23811225

RESUMO

Oxygen deprivation followed by reoxygenation causes pathological responses in many disorders, including ischemic stroke, heart attacks, and reperfusion injury. Key aspects of ischemia-reperfusion can be modeled by a Caenorhabditis elegans behavior, the O2-ON response, which is suppressed by hypoxic preconditioning or inactivation of the O2-sensing HIF (hypoxia-inducible factor) hydroxylase EGL-9. From a genetic screen, we found that the cytochrome P450 oxygenase CYP-13A12 acts in response to the EGL-9-HIF-1 pathway to facilitate the O2-ON response. CYP-13A12 promotes oxidation of polyunsaturated fatty acids into eicosanoids, signaling molecules that can strongly affect inflammatory pain and ischemia-reperfusion injury responses in mammals. We propose that roles of the EGL-9-HIF-1 pathway and cytochrome P450 in controlling responses to reoxygenation after anoxia are evolutionarily conserved.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Eicosanoides/metabolismo , Evolução Molecular , Ácidos Graxos Insaturados/metabolismo
8.
Neuron ; 73(5): 925-40, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22405203

RESUMO

The C. elegans HIF-1 proline hydroxylase EGL-9 functions as an O(2) sensor in an evolutionarily conserved pathway for adaptation to hypoxia. H(2)S accumulates during hypoxia and promotes HIF-1 activity, but how H(2)S signals are perceived and transmitted to modulate HIF-1 and animal behavior is unknown. We report that the experience of hypoxia modifies a C. elegans locomotive behavioral response to O(2) through the EGL-9 pathway. From genetic screens to identify novel regulators of EGL-9-mediated behavioral plasticity, we isolated mutations of the gene cysl-1, which encodes a C. elegans homolog of sulfhydrylases/cysteine synthases. Hypoxia-dependent behavioral modulation and H(2)S-induced HIF-1 activation require the direct physical interaction of CYSL-1 with the EGL-9 C terminus. Sequestration of EGL-9 by CYSL-1 and inhibition of EGL-9-mediated hydroxylation by hypoxia together promote neuronal HIF-1 activation to modulate behavior. These findings demonstrate that CYSL-1 acts to transduce signals from H(2)S to EGL-9 to regulate O(2)-dependent behavioral plasticity in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Cisteína Sintase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipóxia/fisiopatologia , Locomoção/efeitos dos fármacos , Locomoção/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional , Cisteína Sintase/genética , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/genética , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/farmacologia , Locomoção/fisiologia , Modelos Moleculares , Biologia Molecular , Mutagênese/genética , Oxigênio/metabolismo , Oxigênio/farmacologia , Peptídeos/farmacologia , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA