Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 8(7): 4299-310, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26839090

RESUMO

The present study aims to deduce the confinement effect on the magnetic properties of iron carbide (Fe3C) nanorods filled inside carbon nanotubes (CNTs), and to document any structural phase transitions that can be induced by compressive/tensile stress generated within the nanorod. Enhancement in the magnetic properties of the nanorods is attributed to tensile stress as well as to compression, present in the radial direction and along the nanotube axis, respectively. Finally, the growth of permanent cylindrical nanomagnets has been optimized by applying a field gradient. Besides presenting the growth model of in situ filling, we have also proposed the mechanism of magnetization of the nanotubes. Magnetization along the tube axis has been probed by confirming the pole formation. Fe3C has been selected because of its ease of formation, low TC and incompressibility.

2.
Nanotechnology ; 19(32): 325704, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-21828826

RESUMO

Eu(3+) co-doped Y(2)O(3):Tb nanoparticles were prepared by the combustion method and characterized for their structural and luminescence properties as a function of annealing temperatures and relative concentration of Eu(3+) and Tb(3+) ions. For Y(2)O(3):Eu,Tb nanoparticles annealed at 600 and 1200 °C, variation in the relative intensity of excitation transitions between the (7)F(6) ground state and low spin and high spin 4f(7)5d(1) excited states of Tb(3+) is explained due to the combined effect of distortion around Y(3+)/Tb(3+) in YO(6)/TbO(6) polyhedra and the size of the nanoparticles. Increase in relative intensity of the 285 nm peak (spin-allowed transition denoted as peak B) with respect to the 310 nm peak (spin-forbidden transition denoted as peak A) with decrease of Tb(3+) concentration in the Y(2)O(3):Eu,Tb nanoparticles heated at 1200 °C is explained based on two competing effects, namely energy transfer from Tb(3+) to Eu(3+) ions and quenching among the Tb(3+) ions. Back energy transfer from Tb(3+) to Eu(3+) in these nanoparticles is found to be very poor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA