Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Chemistry ; 30(9): e202303068, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38150640

RESUMO

High levels of unconjugated bilirubin (UB) in serum lead to asymptomatic and neonatal jaundice and brain dysfunctions. Herein, we have reported the detection of UB at as low as 1 µM in an aqueous alkaline medium using a Zn(II) complex. The specificity of the complex has been validated by the HPLC in the concentration window 6-90 µM, which is rare. The sensory response of the probe at physiological pH against nitro explosives developed it as an instant-acting fluorosensor for picric acid (PA) and 2,4-dinitrophenol (2,4-DNP). Spectroscopic titration provided a binding constant of 4×105  M-1 with PA. The naked eye detection was found to be 15 µM. The solid-state photoluminescent nature of the complex enabled it for PA sensing in the solid phase. Interestingly, the probe remained fluorescent in various volatile and non-volatile organic solvents. As a result, it can also detect PA and 2,4-DNP in a wide range of common organic media. NMR studies revealed the coordination of PA, 2,4-DNP, and UB to the Zn(II) center of the probe, which is responsible for the observed quenching of the probe with the analytes.


Assuntos
Nitrofenóis , Picratos , Água , Recém-Nascido , Humanos , Zinco , 2,4-Dinitrofenol , Antifúngicos , Bilirrubina
2.
Chembiochem ; 24(5): e202200541, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598026

RESUMO

Peroxynitrite (ONOO- ) is an essential endogenous reactive oxygen species (ROS) generated in mitochondria under various pathological and physiological conditions. An increase in its level in mitochondria is related to numerous diseases. Herein, we report a series of hemicyanine-derived water-soluble colorimetric probes (1-4) and the reactivity of which was studied with various reactive oxygen, nitrogen, and sulfur species. Probes 1-4 are formed by conjugating 1,2,3,3-tetramethyl-3H-indolium iodide and 4-hydroxybenzaldehyde or its derivatives through an alkene linkage formed by the Knoevenagel reaction. Oxidative cleavage of the electron-rich double bond of the conjugated hemicyanine dye revealed a discerning affinity of probe 3 towards peroxynitrite among all reactive oxygen species. The rapid change in color of 3 provides a sensitive and selective method for detecting peroxynitrite with a low detection limit of 180 nM. Notably, the water solubility of the probe displays excellent performance for the selective detection of peroxynitrite among ROS and reactive nitrogen (RNS)/sulfur species (RSS). UV-vis, 1 H NMR, and 13 C NMR spectroscopic data and results from theoretical calculations provide further information on the interaction of peroxynitrite with probe 3.


Assuntos
Oxigênio , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio/química , Espécies Reativas de Nitrogênio/química , Ácido Peroxinitroso , Colorimetria , Água/química , Nitrogênio , Corantes Fluorescentes/química , Enxofre
3.
Risk Anal ; 43(11): 2280-2297, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36746175

RESUMO

Critical infrastructures such as cyber-physical energy systems (CPS-E) integrate information flow and physical operations that are vulnerable to natural and targeted failures. Safe, secure, and reliable operation and control of CPS-E is critical to ensure societal well-being and economic prosperity. Automated control is key for real-time operations and may be mathematically cast as a sequential decision-making problem under uncertainty. Emergence of data-driven techniques for decision making under uncertainty, such as reinforcement learning (RL), have led to promising advances for addressing sequential decision-making problems for risk-based robust CPS-E control. However, existing research challenges include understanding the applicability of RL methods across diverse CPS-E applications, addressing the effect of risk preferences across multiple RL methods, and development of open-source domain-aware simulation environments for RL experimentation within a CPS-E context. This article systematically analyzes the applicability of four types of RL methods (model-free, model-based, hybrid model-free and model-based, and hierarchical) for risk-based robust CPS-E control. Problem features and solution stability for the RL methods are also discussed. We demonstrate and compare the performance of multiple RL methods under different risk specifications (risk-averse, risk-neutral, and risk-seeking) through the development and application of an open-source simulation environment. Motivating numerical simulation examples include representative single-zone and multizone building control use cases. Finally, six key insights for future research and broader adoption of RL methods are identified, with specific emphasis on problem features, algorithmic explainability, and solution stability.

4.
Luminescence ; 38(7): 1282-1286, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36255132

RESUMO

Transition metal oxide has emerged as one of the most potential candidates for environment remediation by utilizing solar energy through photocatalysis. This study compares the optical characteristics of zinc oxide (ZnO) and ceria-doped zinc oxide (CeZnO) nanoparticles synthesized through a facile chemical precipitation method without using any assistant catalyst. The present work investigates the consequences of ceria (cerium dioxide, CeO2 ) intrusion on the photocatalytic activity of ZnO nanoparticles using methylene blue (MB) as a probe pollutant. The CeZnO showed an increase in photoactivity when compared to ZnO nanoparticles for degradation of MB in an aqueous solution under ultraviolet (UV) irradiance. The resulting heterojunction between ZnO and that of ceria enhances the charge separation efficiency showing a strong correlation between ZnO and CeO2 heterojunction on the charge transfer mechanism across the interface.


Assuntos
Nanopartículas , Óxido de Zinco , Iluminação , Raios Ultravioleta , Precipitação Química , Catálise , Azul de Metileno
5.
J Occup Environ Hyg ; 19(2): 102-110, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34895086

RESUMO

COVID-19 has created shortages of personal protective equipment. In resource-constrained situations, limited cycles of disinfection and extended use of gloves is recommended by the U.S. Centers for Disease Control and Prevention to conserve supplies. However, these guidelines are based on limited evidence. In this study, serial cycles of hand hygiene were performed on gloved hands using an ethanol-based hand rub (six and 10 cycles), 0.1% sodium hypochlorite (bleach) solution (10 cycles), or soap and water (10 cycles) on latex and nitrile medical exam gloves from the United States and India. A modified water-leak test evaluated glove integrity after repeated applications of these disinfecting agents. When aggregated, dilute bleach demonstrated the lowest difference between treatment and control arms: -2.5 percentage points (95% CI: -5.3 to 0.3) for nitrile, 0.6 percentage points (95% CI: -2.6 to 3.8) for non-powdered latex. For U.S.-purchased gloves tested with six and 10 applications of ethanol-based hand rub, the mean difference in failure risk between treatment and control gloves was within the prespecified non-inferiority margin of five percentage points or less, though some findings were inconclusive since outside the margin. The aggregated difference in failure risk between treatment and control was 3.5 percentage points (0.6 to 6.4) for soap and water, and 2.3 percentage points (-0.5 to 5.0) and 5.0 percentage points (1.8 to 8.2) for 10 and 6 applications of ethanol-based hand rub, respectively. Most leaks occurred in the interdigital webs (35%) and on the fingers (34%). This indicates that some combinations of glove types and disinfection methods may allow for extended use. Ten applications of dilute bleach solution had the least impact on glove integrity. However, the majority of glove and exposure combinations were inconclusive. Additional testing of specific glove and disinfectant combinations may inform future strategies to guide extended use during glove shortages. Additional considerations, not evaluated here, include duration of use, disinfectant chemical permeation, and the effects of hand temperature, movement, and manipulation of instruments on glove integrity.


Assuntos
COVID-19 , Desinfetantes , Desinfecção , Falha de Equipamento , Luvas Protetoras , Luvas Cirúrgicas , Humanos , SARS-CoV-2
6.
J Occup Environ Hyg ; 19(2): 111-121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34895087

RESUMO

Many healthcare professionals have been forced, under acute shortages, to extend medical exam gloves beyond their intended single use. Despite limited available literature, the CDC proposed a set of guidelines for repeated exam gloves use, indicating a maximum number of treatments for three widely available disinfectants. This study examines how these treatments affect the mechanical properties of latex and nitrile gloves. Furthermore, an acceptability threshold is proposed for changes in tensile property, specifically elastic modulus, as an indication of degradation. This proposed criterion was also applied to similar studies available in the literature to determine applicability and aid in recommendation development. Three different latex glove brands and three nitrile brands were exposed to repeated treatments of an alcohol-based hand rub, diluted bleach, or soap and water. Tensile tests of samples cut from untreated and treated gloves were performed to assess the change in elastic modulus induced by each treatment. The findings suggest that latex gloves performed well within the CDC recommended guidelines of six repeated treatments for an ethanol-based hand rub and 10 repeated treatments of either dilute bleach or soap and water. Nitrile exam gloves, on the other hand, showed significant changes in elastic modulus, with more inconclusive results among brands. This was especially true for treatment with dilute bleach and soap and water. Further research is needed to investigate the effects of disinfection products on the mechanical integrity of nitrile exam gloves. The results support the use of five repeated treatments of ethanol-based hand rub for nitrile exam gloves, a lower threshold than currently recommended by the CDC. This research also supports that the CDC recommendation of 10 repeated treatment with soap and water is appropriate for latex exam gloves, but not for nitrile exam gloves. Occupational safety and health professionals involved in the selection of disposable exam gloves for infection control should consider the compatibility of the glove polymer type with available disinfectants, especially if extended use with repeated disinfection becomes necessary.


Assuntos
Desinfetantes , Desinfecção , 2-Propanol , Luvas Protetoras , Látex
7.
Nanotechnology ; 30(25): 254002, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30802882

RESUMO

Bulk gallium phosphide (GaP) crystallizes in the zinc-blende (ZB) structure and has an indirect bandgap. However, GaP nanowires (NWs) can be synthesized in the wurtzite (WZ) phase as well. The contradictory theoretical predictions and experimental reports on the band structure of WZ GaP suggest a direct or a pseudo-direct bandgap. There are only a few reports of the growth and luminescence from WZ and ZB GaP NWs. We first present a comprehensive study of the gold-catalyzed growth of GaP NWs via metalorganic vapor phase epitaxy on various crystalline and amorphous substrates. We optimized the growth parameters like temperature, pressure and reactant flow rates to grow WZ GaP NWs with minimal taper. These wires were characterized using electron microscopy, x-ray diffraction, Raman scattering and photoluminescence spectroscopy. The luminescence studies of bare GaP NWs and GaP/AlGaP core-shell heterostructures with WZ- and ZB-phase GaP cores suggest that the WZ-phase GaP has a pseudo-direct bandgap with weak near-band-edge luminescence intensity.

8.
Nanotechnology ; 29(14): 145706, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457965

RESUMO

ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.

9.
Nanotechnology ; 29(42): 425709, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30052203

RESUMO

We investigate differences observed in the time evolution of Raman spectra for differently oriented (in plane) InAs nanowires (NWs), using polarized Raman spectroscopy. Specially designed polarized Raman spectroscopy experiments elucidate that laser irradiation leads to the formation of an oriented crystalline oxide film on the InAs NW surface. Both the formation of oriented crystalline oxides and Raman selection rules leading to the presence/absence of oxide peaks in the unpolarized Raman spectra are uncommon occurrences and can lead to incorrect interpretations of the oxidation process, if not looked into carefully. Further, the specially designed heating and cooling experiments for a mixed phase (wurtzite + zinc blende) InAs NW revealed the formation of specific allotropes of elemental As, i.e. gray-As (rhombohedral) and black-As (orthorhombic: metastable) at low (700-950 K) and high simulated temperatures (1000-1300 K) on the InAs NW surface, respectively. Both have high electrical conductivity due to a layered structure and control over the growth of only a few layers using laser irradiation envisages properties similar to graphene. This kind of surface of InAs NWs has the potential for novel device applications, where a semiconductor-insulator-metal heterostructure is required.

10.
Nano Lett ; 17(5): 3202-3207, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414459

RESUMO

Atomically thin materials such as graphene or MoS2 are of high in-plane symmetry. Crystals with reduced symmetry hold the promise for novel optoelectronic devices based on their anisotropy in current flow or light polarization. Here, we present polarization-resolved optical transmission and photoluminescence spectroscopy of excitons in 1T'-ReSe2. On reducing the crystal thickness from bulk to a monolayer, we observe a strong blue shift of the optical band gap from 1.37 to 1.50 eV. The excitons are strongly polarized with dipole vectors along different crystal directions, which persist from bulk down to monolayer thickness. The experimental results are well reproduced by ab initio calculations based on the GW-BSE approach within LDA+GdW approximation. The excitons have high binding energies of 860 meV for the monolayer and 120 meV for bulk. They are strongly confined within a single layer even for the bulk crystal. In addition, we find in our calculations a direct band gap in 1T'-ReSe2 regardless of crystal thickness, indicating weak interlayer coupling effects on the band gap characteristics. Our results pave the way for polarization-sensitive applications, such as optical logic circuits operating in the infrared spectral region.

11.
Nano Lett ; 16(12): 7632-7638, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960500

RESUMO

Despite the numerous reports on the metal-catalyzed growth of GaN nanowires, the mechanism of growth is not well understood. Our study of the nickel-assisted growth of GaN nanowires using metalorganic chemical vapor deposition provides key insights into this process. From a comprehensive study of over 130 nanowires, we observe that as a function of thickness, the length of the nanowires initially increases and then decreases. We attribute this to an interplay between the Gibbs-Thomson effect dominant in very thin nanowires and a diffusion induced growth mode at larger thickness. We also investigate the alloy composition of the Ni-Ga catalyst particle for over 60 nanowires using energy dispersive X-ray spectroscopy, which along with data from electron energy loss spectroscopy and high resolution transmission electron microscopy suggests the composition to be Ni2Ga3. At the nanowire growth temperature, this alloy cannot be a liquid, even taking into account melting point depression in nanoparticles. We hence conclude that Ni-assisted GaN nanowire growth proceeds via a vapor-solid-solid mechanism instead of the conventional vapor-liquid-solid mechanism.

12.
Nano Lett ; 12(12): 6432-5, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23171031

RESUMO

We study InAs nanowire resonators fabricated on sapphire substrate with a local gate configuration. The key advantage of using an insulating sapphire substrate is that it results in a reduced parasitic capacitance, thus allowing both wide bandwidth actuation and detection using a network analyzer as well as signal detection at room temperature. Both in-plane and out-of-plane vibrational modes of the nanowire can be driven and the nonlinear response of the resonators studied. In addition, this technique enables the study of variation of thermal strains due to heating in nanostructures.

14.
Toxicol Int ; 20(2): 160-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24082510

RESUMO

The effects of arsenic exposure during rapid brain growth period (RBGP) (postnatal period 4-11) on pyramidal neurons of cornu ammonis (specifically CA1 and CA3 regions) and granule cells of dentate gyrus (DG) of rat hippocampus were studied. Wistar rat pups, subdivided into the control (group I) and the experimental groups (group II, III, and IV), received distilled water and sodium arsenite (aqueous solution of 1.0, 1.5, and 2.0 mg/kg body weight, respectively) by intraperitoneal (i.p.) route. On postnatal day (PND) 12, the animals were sacrificed and brain tissue obtained. Paraffin sections (8 µm thick) stained with Cresyl Violet (CV) were observed for morphological and morphometric parameters. Arsenic induced programmed cell death (apoptosis) was studied using Terminal deoxyribonucleotidyl transferase mediated dUTP biotin Nick End Labeling (TUNEL) technique on the paraffin sections. Microscopy revealed decreased number and isolation of pyramidal neurons in superficial layers, misalignments of pyramidal cells in stratum pyramidale (SP) of CA1 and CA3 in experimental group III and IV, and presence of polymorphic cells in subgranular zone of ectal limb of dentate gyrus (suggestive of arsenic induced proliferation and migration of granule cells in the dentate gyrus). Morphometric assessments quantified and confirmed the microscopic findings. The mean nuclear area of pyramidal cells was increased and cell density was decreased in the CA1, CA3, and DG of experimental groups in comparison to the control group. Increase in the TUNEL positive cells in DG was observed in the experimental group IV, suggestive of increased apoptosis. These observations confirm vulnerability of pyramidal (CA1, CA3) and granule cells (DG) of hippocampus during RBGP.

15.
J Inorg Biochem ; 233: 111845, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35598423

RESUMO

Singlet oxygen (1O2) and hypochlorite (OCl-) are two principal non-radical reactive oxygen species (ROS) which, are produced in a number of biochemical processes. In cellular systems, these analytes play various important roles. In this article, we report two mononuclear oxido- and dioxidovanadium(V) compounds 1 and 2 of an intramolecularly hydrogen bonded luminescent zwitterion ligand (HL). Single crystal X-ray diffraction analysis and multinuclear (1H and 51V) NMR spectroscopy provided the identities of 1 and 2 in the solid and solution states, respectively. Both 1 and 2 are water soluble and fluorescent. Fluorescence of the ligand HL is responsible for the fluorescent nature of 1 and 2. Protonation of the hanging amine moiety of the ligand remained unchanged in the vanadium complexes 1 and 2. However, the intramolecular H-bonding is not present in 1 and 2. Hydrophilicity and luminescent nature of the vanadium complexes provided us the opportunity to study the interaction of 1 and 2 with different ROS. Excited state photophysical investigations revealed highly selective instant response of the probes 1 and 2 for singlet oxygen and hypochlorite. Specific response of the dioxidovanadium(V) complex 1 towards singlet oxygen/hypochlorite remained unchanged in presence of other challenging ROS. Spectrofluorimetric titration provided limit of detection around 180 nM for 1O2. 1H NMR and theoretical calculations provided further information on the interactions between vanadium compound and analyte.


Assuntos
Oxigênio Singlete , Vanádio , Cristalografia por Raios X , Ácido Hipocloroso , Ligantes , Vanádio/química
16.
BMC Bioinformatics ; 12: 119, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21521499

RESUMO

BACKGROUND: With next-generation sequencing technologies, experiments that were considered prohibitive only a few years ago are now possible. However, while these technologies have the ability to produce enormous volumes of data, the sequence reads are prone to error. This poses fundamental hurdles when genetic diversity is investigated. RESULTS: We developed ShoRAH, a computational method for quantifying genetic diversity in a mixed sample and for identifying the individual clones in the population, while accounting for sequencing errors. The software was run on simulated data and on real data obtained in wet lab experiments to assess its reliability. CONCLUSIONS: ShoRAH is implemented in C++, Python, and Perl and has been tested under Linux and Mac OS X. Source code is available under the GNU General Public License at http://www.cbg.ethz.ch/software/shorah.


Assuntos
Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , HIV/genética , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Neoplasias/genética , Análise de Sequência de DNA/economia
17.
Dermatology ; 223(3): 193-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21876340

RESUMO

Primary palmoplantar hyperhidrosis (PPH) is believed to be a dysfunction of emotional sweating, with an estimated prevalence of around 3%. Several treatment options including topical antiperspirants, tap water iontophoresis, botulinum toxin injections, oral anticholinergics, and tricyclic antidepressants are available, each with a significant adverse event profile. For the first time, we report a PPH patient with comorbid juvenile myoclonic epilepsy (JME) treated successfully with a combination of paroxetine and divalproex sodium. Paroxetine resulted in improvement in PPH, possibly through its anticholinergic and/or noradrenergic actions. Though the occurrence of PPH and JME together seems to be a chance association, some common frontal lobe mechanisms may be involved that need to be explored further.


Assuntos
Hiperidrose/tratamento farmacológico , Epilepsia Mioclônica Juvenil/tratamento farmacológico , Paroxetina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Adolescente , Anticonvulsivantes/uso terapêutico , Quimioterapia Combinada , Feminino , Mãos , Humanos , Qualidade de Vida , Resultado do Tratamento , Ácido Valproico/uso terapêutico
18.
Nanoscale ; 13(2): 1248-1256, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404576

RESUMO

In the bilayer ReS2 channel of a field-effect transistor (FET), we demonstrate using Raman spectroscopy that electron doping (n) results in softening of frequency and broadening of linewidth for the in-plane vibrational modes, leaving the out-of-plane vibrational modes unaffected. The largest change is observed for the in-plane Raman mode at ∼151 cm-1, which also shows doping induced Fano resonance with the Fano parameter 1/q = -0.17 at a doping concentration of ∼3.7 × 1013 cm-2. A quantitative understanding of our results is provided by first-principles density functional theory (DFT), showing that the electron-phonon coupling (EPC) of in-plane modes is stronger than that of out-of-plane modes, and its variation with doping is independent of the layer stacking. The origin of large EPC is traced to 1T to 1T' structural phase transition of ReS2 involving in-plane displacement of atoms whose instability is driven by the nested Fermi surface of the 1T structure. Results are compared with those of the isostructural trilayer ReSe2.

19.
PLoS One ; 16(9): e0255338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591858

RESUMO

Global shortages of N95 respirators have led to an urgent need of N95 decontamination and reuse methods that are scientifically validated and available world-wide. Although several large scale decontamination methods have been proposed (hydrogen peroxide vapor, UV-C); many of them are not applicable in remote and low-resource settings. Heat with humidity has been demonstrated as a promising decontamination approach, but care must be taken when implementing this method at a grassroots level. Here we present a simple, scalable method to provide controlled humidity and temperature for individual N95 respirators which is easily applicable in low-resource settings. N95 respirators were subjected to moist heat (>50% relative humidity, 65-80°C temperature) for over 30 minutes by placing them in a sealed container immersed in water that had been brought to a rolling boil and removed from heat, and then allowing the containers to sit for over 45 minutes. Filtration efficiency of 0.3-4.99 µm incense particles remained above 97% after 5 treatment cycles across all particle size sub-ranges. This method was then repeated at a higher ambient temperature and humidity in Mumbai, using standard utensils commonly found in South Asia. Similar temperature and humidity profiles were achieved with no degradation in filtration efficiencies after 6 cycles. Higher temperatures (>70°C) and longer treatment times (>40 minutes) were obtained by insulating the outer vessel. We also showed that the same method can be applied for the decontamination of surgical masks. This simple yet reliable method can be performed even without electricity access using any heat source to boil water, from open-flame stoves to solar heating, and provides a low-cost route for N95 decontamination globally applicable in resource-constrained settings.


Assuntos
COVID-19/prevenção & controle , Descontaminação/métodos , Reutilização de Equipamento/estatística & dados numéricos , Temperatura Alta , Umidade , Máscaras/normas , Respiradores N95/normas , Ásia/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Filtração , Humanos , SARS-CoV-2
20.
Phys Fluids (1994) ; 32(9): 093304, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32982134

RESUMO

N95 respirators comprise a critical part of the personal protective equipment used by frontline health-care workers and are typically meant for one-time usage. However, the recent COVID-19 pandemic has resulted in a serious shortage of these masks leading to a worldwide effort to develop decontamination and re-use procedures. A major factor contributing to the filtration efficiency of N95 masks is the presence of an intermediate layer of charged polypropylene electret fibers that trap particles through electrostatic or electrophoretic effects. This charge can degrade when the mask is used. Moreover, simple decontamination procedures (e.g., use of alcohol) can degrade any remaining charge from the polypropylene, thus severely impacting the filtration efficiency post-decontamination. In this report, we summarize our results on the development of a simple laboratory setup allowing measurement of charge and filtration efficiency in N95 masks. In particular, we propose and show that it is possible to recharge the masks post-decontamination and recover filtration efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA