Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 51(2): 1047-1060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37469179

RESUMO

BACKGROUND: Image quality of photon-counting and energy integrating CT scanners changes with object size, dose to the object, and kernel selection. PURPOSE: To comprehensively compare task-generic image quality of photon-counting CT (PCCT) and energy integrating CT (EICT) systems as a function of phantom size, dose, and reconstruction kernel. METHODS: A size-variant phantom (Mercury Phantom 3.0) was used to characterize the image quality of PCCT and EICT systems as a function of object size. The phantom contained five cylinders attached by slanted tapered sections. Each cylinder contained two sections: one uniform for noise, and the other with inserts for spatial resolution and contrast measurements. The phantom was scanned on Siemens' SOMATOM Force and NAEOTOM Alpha at 1.18 and 7.51 mGy without tube current modulation. CTDIvol was matched across two systems by setting the required tube currents, else, all other acquisition settings were fixed. CT sinograms were reconstructed using FBP and iterative (ADMIRE2 - Force; QIR2 - Alpha) algorithms with Body regular (Br) kernels. Noise Power Spectrum (NPS), Task Transfer Function (TTF), contrast-to-noise ratio (CNR), and detectability index (d') for a task of identifying 2-mm disk were evaluated based on AAPM TG-233 metrology using imQuest, an open-source software package. Averaged noise frequency (fav ) and 50% cut-off frequency for TTF (f50 ) were used as scalar metrics to quantify noise texture and spatial resolution, respectively. The difference between image quality metrics' measurements was calculated as IQPCCT - IQEICT . RESULTS: From Br40 (soft) to Br64 (sharp), f50 for air insert increased from 0.35 mm-1  ± 0.04 (standard deviation) to 0.76 mm-1  ± 0.17, 0.34 mm-1  ± 0.04 to 0.77 mm-1  ± 0.17, 0.37 mm-1  ± 0.02 to 0.95 mm-1  ± 0.17 for PCCT-T3D-QIR2, PCCT-70keV-QIR2, and EICT-ADMIRE2, respectively, when averaged over all sizes and dose levels. Similarly, from Br40 to Br64, noise magnitude increased from 10.86 HU ± 7.12 to 38.61 HU ± 18.84, 10.94 HU ± 7.08 to 38.82 HU ± 18.70, 13.74 HU ± 11.02 to 52.11 HU ± 26.22 for PCCT-T3D-QIR2, PCCT-70keV-QIR2, and EICT-ADMIRE2, respectively. The difference in fav was consistent across all sizes and dose levels. PCCT-70keV-VMI showed better consistency in contrast measurements for iodine and bone inserts than PCCT-T3D and EICT; however, PCCT-T3D had higher contrast for both inserts. From Br40 to Br64, considering all sizes and dose levels, CNR for iodine insert decreased from 52.30 ± 46.44 to 12.18 ± 10.07, 40.42 ± 33.42 to 9.48 ± 7.16, 39.94 ± 37.60 to 7.84 ± 6.67 for PCCT-T3D-QIR2, PCCT-70keV-QIR2, and EICT-ADMIRE2, respectively. CONCLUSIONS: Both PCCT image types, T3D and 70-keV-VMI exhibited similar or better noise, contrast, CNR than EICT when comparing kernels with similar names. For 512 × 512 matrix, PCCT's sharp kernels had lower resolution than EICT's sharp kernels. For all image quality metrics, except extreme low, every dose condition had a similar set of IQ-matching kernels. It suggests that considering patient size and dose level to determine IQ-matching kernel pairs across PCCT and EICT systems may not be imperative while translating protocols, except when the signal to the detector is extremely low.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Imagens de Fantasmas , Algoritmos , Doses de Radiação
2.
Med Phys ; 50(11): 6693-6703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602816

RESUMO

BACKGROUND: High tube current generates a high flux of x-rays to photon counting detectors (PCDs) that can potentially result in the piling up of pulses formed by concurrent photons, which can cause count loss and energy resolution degradation. PURPOSE: To evaluate the performance of clinical photon-counting CT (PCCT) systems in high flux, potentially influenced by pulse pileup effects, in terms of task-generic image quality metrics. METHODS: A clinical phantom was scanned on a commercial PCCT scanner (NAEOTOM Alpha, Siemens) at 120 kV under fourteen different tube current levels (40-1000 mA) with a rotation time of 0.25 s and a pitch of 1. The dose levels corresponded to CTDIvol (32 cm phantom) of 0.79-19.8 mGy. CT sinograms were reconstructed using QIR-off mode (noniterative reconstruction algorithm), Br44 kernel, and a voxel size of 0.4102 × 0.4102 × 3 mm 3 $0.4102 \times 0.4102 \times 3{\mathrm{\ mm}}^3$ . imQuest, an open-source MATLAB-based software package was used to calculate noise power spectrum (NPS), task transfer function (TTF), contrast-to-noise ratio (CNR), and CT number according to AAPM Task Group 233 metrology. RESULTS: The 50% cut-off frequency of TTF (f50 ) remained mostly constant across all higher tube currents for all inserts, namely polyethylene, bone, air, and acrylic. Using the lowest two data points (40 and 80 mA), the expected relationship between noise magnitude and tube current was determined to be noise ∝ $ \propto \ $ mA-0.47 . The measured noise magnitude were up to 11.1% higher than the expected value at the highest tube current. The average frequency of NPS (fav ) decreased from 0.32 to 0.29 mm-1 as tube current increased from 40 to 1000 mA. No considerable effects were observed in CT number measurement of any insert; however, CT numbers for air and bone changed almost monotonically as tube current increased. Absolute CNR increased monotonically for all inserts; however, the difference between measured and expected CNRs were approximately -6% to 12% across all tube currents. CONCLUSIONS: Increasing tube currents did not affect the spatial resolution, but slightly affected the CT number and noise measurements of the clinical PCCT system. However, the effects were only considerable at clinically irrelevant tube currents used on a small 20-cm phantom. In general clinical practices, automatic exposure control techniques are used to decrease the variation of flux on the detector, which alleviates the chances of detector saturation due to high count rates. The observed effects could be due to pulse pileup, signal-dependent filtration of the system, or nonlinearities in the reconstruction algorithm. In conclusion, either the deadtime of the detector used in the photon-counting CT system is shorter such that count losses due to pulse pileup are negligible, or pulse pileup has inconsiderable effects on the image quality of clinical photon-counting CT systems in routine clinical practice due to possible corrections applied on the system.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Telúrio , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA