Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 7(5): e07022, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34041391

RESUMO

Arenaviral infections often result lethal hemorrhagic fevers, affecting primarily in African and South American regions. To date, there is no FDA-approved licensed vaccine against arenaviruses and treatments have been limited to supportive therapy. Hence, the study was employed to design a highly immunogenic cross-reactive vaccine against Arenaviridae family using reverse vaccinology approach. The whole proteome of Lassa virus (LASV), Lymphocytic Choriomeningitis virus (LCMV), Lujo virus and Guanarito virus were retrieved and assessed to determine the most antigenic viral proteins. Both T-cell and B-cell epitopes were predicted and screened based on transmembrane topology, antigenicity, allergenicity, toxicity and molecular docking analysis. The final constructs were designed using different adjuvants, top epitopes, PADRE sequence and respective linkers and were assessed for the efficacy, safety, stability and molecular cloning purposes. The proposed epitopes were highly conserved (84%-100%) and showed greater cumulative population coverage. Moreover, T cell epitope GWPYIGSRS was conserved in Junin virus (Argentine mammarenavirus) and Sabia virus (Brazilian mammarenavirus), while B cell epitope NLLYKICLSG was conserved in Machupo virus (Bolivian mammarenavirus) and Sabia virus, indicating the possibility of final vaccine construct to confer a broad range immunity in the host. Docking analysis of the refined vaccine with different MHC molecules and human immune receptors were biologically significant. The vaccine-receptor (V1-TLR3) complex showed minimal deformability at molecular level and was compatible for cloning into pET28a(+) vector of E. coli strain K12. The study could be helpful in developing vaccine to combat arenaviral infections in the future. However, further in vitro and in vivo trials using model animals are highly recommended for the experimental validation of our findings.

2.
FEMS Microbiol Lett ; 367(6)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129839

RESUMO

Morganella morganii, a gram negative, facultative anaerobic bacterium belonging to the Proteeae tribe of the Morganellaceae family, is an unusual opportunistic pathogen mainly responsible for nosocomial and urinary tract infections. While cattle have long been established as a source of a few zoonotic pathogens, no such data has been recorded for M. morganii despite its ubiquitous presence in nature and a number of animal hosts. In this study, draft genomes were produced of three M. morganii isolates from Bangladeshi cattle. The three isolates, named B2, B3 and B5, possessed an average genome size of 3.9 Mp, a GC% of ∼51% and pan and core genomes of 4637 and 3812 genes, respectively. All strains were bearers of the qnrD1 carrying plasmid Col3M and possessed roughly similar virulence profiles and prophage regions. The strains also carried genes that were unique when compared with other publicly available M. morganii genomes. Many of these genes belonged to metabolic pathways associated with adaptation to environmental stresses and were predicted in silico to be borne in genomic islands. The findings of this study expand on the current understanding of M. morganii''s genomic nature and its adaptation in cattle.


Assuntos
Genoma Bacteriano/genética , Morganella morganii/genética , Reto/microbiologia , Sequenciamento Completo do Genoma , Animais , Bangladesh , Bovinos , Ilhas Genômicas/genética , Morganella morganii/isolamento & purificação , Morganella morganii/patogenicidade , Prófagos/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA