Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 40(4): 729-742, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31818976

RESUMO

The impact of pannexin-1 (Panx1) channels on synaptic transmission is poorly understood. Here, we show that selective block of Panx1 in single postsynaptic hippocampal CA1 neurons from male rat or mouse brain slices causes intermittent, seconds long increases in the frequency of sEPSC following Schaffer collateral stimulation. The increase in sEPSC frequency occurred without an effect on evoked neurotransmission. Consistent with a presynaptic origin of the augmented glutamate release, the increased sEPSC frequency was prevented by bath-applied EGTA-AM or TTX. Manipulation of a previously described metabotropic NMDAR pathway (i.e., by preventing ligand binding to NMDARs with competitive antagonists or blocking downstream Src kinase) also increased sEPSC frequency similar to that seen when Panx1 was blocked. This facilitated glutamate release was absent in transient receptor potential vanilloid 1 (TRPV1) KO mice and prevented by the TRPV1 antagonist, capsazepine, suggesting it required presynaptic TRPV1. We show presynaptic expression of TRPV1 by immunoelectron microscopy and link TRPV1 to Panx1 because Panx1 block increases tissue levels of the endovanilloid, anandamide. Together, these findings demonstrate an unexpected role for metabotropic NMDARs and postsynaptic Panx1 in suppression of facilitated glutamate neurotransmission.SIGNIFICANCE STATEMENT The postsynaptic ion and metabolite channel, pannexin-1, is regulated by metabotropic NMDAR signaling through Src kinase. This pathway suppresses facilitated release of presynaptic glutamate during synaptic activity by regulating tissue levels of the transient receptor potential vanilloid 1 agonist anandamide.


Assuntos
Conexinas/metabolismo , Ácido Glutâmico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Quelantes de Cálcio/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Tetrodotoxina/farmacologia , Quinases da Família src/metabolismo
2.
Acta Pharmacol Sin ; 34(1): 39-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22864302

RESUMO

Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Canais Iônicos/metabolismo , Neurônios/patologia , Animais , Encéfalo/metabolismo , Isquemia Encefálica/etiologia , Morte Celular , Conexinas/metabolismo , Humanos , Neurônios/metabolismo , Receptores Purinérgicos/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
3.
Neurosci Lett ; 695: 65-70, 2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28911820

RESUMO

Pannexins form single membrane channels that regulate the passage of ions, small molecules and metabolites between the intra- and extracellular compartments. In the central nervous system, these channels are integrated into numerous signaling cascades that shape brain physiology and pathology. Post-translational modification of pannexins is complex, with phosphorylation emerging as a prominent form of functional regulation. While much is still not known regarding the specific kinases and modified amino acids, recent reports support a role for Src family tyrosine kinases (SFK) in regulating pannexin channel activity. This review outlines the current evidence supporting SFK-dependent pannexin phosphorylation in the CNS and examines the importance of these modifications in the healthy and diseased brain.


Assuntos
Sistema Nervoso Central/metabolismo , Conexinas/metabolismo , Quinases da Família src/metabolismo , Animais , Sistema Nervoso Central/enzimologia , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais
5.
Nat Neurosci ; 19(3): 432-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26854804

RESUMO

Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg(2+) or a Ca(2+)-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology.


Assuntos
Conexinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia , Quinases da Família src/fisiologia , Animais , Cálcio/metabolismo , Morte Celular/fisiologia , Conexinas/metabolismo , Maleato de Dizocilpina/farmacologia , Magnésio/farmacologia , Potenciais da Membrana/fisiologia , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA