Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
RSC Adv ; 8(35): 19465-19469, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35540976

RESUMO

With respect to N3, a champion sensitizer in dye-sensitized solar cells (DSSCs), S3 which contained a phenTz (1,10-phenanthroline 5-tetrazole) ancillary ligand showed outstanding improvements in molar extinction coefficient (ε) from 10 681.8 to 12 954.5 M cm-1 as well as 0.92% and 0.9% increases in power conversion efficiency (PCE) and incident photon-to-electron conversion efficiency (IPCE), reaching 8.46% and 76.5%, respectively. To find the origin of the high performance of the DSSC based on a phenTz ancillary ligand, transient absorption spectroscopy (TA) was carried out and indicated that the rate of the regeneration reaction is about 100 times faster than the rate of recombination with the dye which is very exciting and surely a good reason to promote the phenTz ligand as a promising ancillary ligand in DSSCs.

3.
ACS Omega ; 3(8): 9981-9988, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459126

RESUMO

Deep red light-emitting electrochemical cells were prepared based on a blend of [Ru(bpy)3]2+, a cationic complex, and a neutral Zn(II)-complex based on diphenylcarbazone ligands, named Zn(DPCO). The crystal structure of the Zn(DPCO)2 (bpy)] molecule revealed that the DPCO ligand has been deprotonated to form DPCO- and coordinated to the Zn center metal through the C=O and N=N moieties of DPCO. From the cyclic voltammetry results and controlled potential coulometry data of the diphenylcarbazide (DPC) ligand, it is possible to establish that DPC is oxidized in an irreversible process at +0.77 V, giving DPCO and later oxidized at a higher potential (+1.32 V) to produce diphenylcarbadiazone (DPCDO). A detailed assignment of UV-vis spectra futures to determine the origin of ground- and excited-state transitions was achieved by time-dependent density functional theory calculations, which showed good agreement with the experimental results. Using a simple device architecture, we obtained deep red electroluminescence (EL) with high brightness (740 cd m-2) and luminous efficiency of 0.39 cd/A at a low turn-on voltage of 2.5 V. The favorable configuration of the cell consists of only a blend of complexes of indium tin oxide as the anode electrode and molten alloy cathode (Ga/In) without any polymer as the transporting layer. The comparison between [Ru(bpy)3]2+ and [Ru(bpy)3]2+/Zn(DPCO) demonstrates a red shift in the EL wavelength from 625 to 700 nm in the presence of Zn(DPCO), revealing the importance of using blends for future systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA