Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Bioorg Chem ; 143: 106982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995642

RESUMO

Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.


Assuntos
Azidas , Química Click , Maleimidas , Compostos de Sulfidrila , Azidas/química , Alcinos/química , Reação de Cicloadição , Cobre/química
2.
Bioorg Chem ; 143: 107076, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163424

RESUMO

Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antiparasitários/farmacologia , Estudos Prospectivos , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
3.
Bioorg Chem ; 148: 107486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788367

RESUMO

The study aims to synthesize a novel bis(thiosemicarbazone) derivative based on platinum (thioPt) and evaluate its anticancer properties against MFC-7 and MDA-MB-231 breast cancer cells. A new platinum complex was synthesised by reacting K2PtCl4 with 2,2'-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbothioamide) in ethanol in the presence of K2CO3. In the obtained complex, the platinum atom is coordinated by a conjugated system = N-NC-S-The structures of the new compound were characterised using NMR spectroscopy, HR MS, IR, and X-ray structural analysis. The obtained results of the cytotoxicity assay indicate that compound thioPt had potent anticancer activity (MCF-7: 61.03 ± 3.57 µM, MDA-MB-231: 60.05 ± 5.40 µM) with less toxicity against normal MCF-10A breast epithelial cells, even compared to the reference compound (cisplatin). In addition, subsequent experiments found that thioPt induces apoptosis through both an extrinsic (↑caspase 8 activity) and intrinsic (↓ΔΨm) pathway, which ultimately leads to an increase in active caspase 3/7 levels. The induction of autophagy and levels of proteins involved in this process (LC3A/B and Beclin-1) were examined in MCF-7 and MDA-MB-231 breast cancer cells exposed to tested compounds (thio, thioPt, cisPt) at a concentration of 50 µM for 24 h. Based on these results, it can be concluded that thio and thioPt do not significantly affect the autophagy process. This demonstrates their superiority over cisplatin, which can stimulate cancer cell survival through its effect on stimulation of autophagy.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Tiossemicarbazonas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Feminino , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Platina/química , Platina/farmacologia , Autofagia/efeitos dos fármacos
4.
J Enzyme Inhib Med Chem ; 39(1): 2343352, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38700244

RESUMO

In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sulfonamidas , Triazinas , Humanos , Triazinas/farmacologia , Triazinas/química , Triazinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Tumorais Cultivadas , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Feminino , Linhagem Celular Tumoral , Esferoides Celulares/efeitos dos fármacos
5.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39273679

RESUMO

Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this phenomenon. There are few reports in the literature that selenium compounds can modulate the activity of P-glycoprotein (MDR1). Therefore, we performed in silico studies and evaluated the effects of the novel selenoesters EDAG-1 and EDAG-8 on BCRP, MDR1, and MRP1 resistance proteins in MCF-7 and MDA-MB-231 breast cancer cells. The cytometric analysis showed that the tested compounds (especially EDAG-8) are inhibitors of BCRP, MDR1, and MRP1 efflux pumps (more potent than the reference compounds-novobiocin, verapamil, and MK-571). An in silico study correlates with these results, suggesting that the compound with the lowest binding energy to these transporters (EDAG-8) has a more favorable spatial structure affecting its anticancer activity, making it a promising candidate in the development of a novel anticancer agent for future breast cancer therapy.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Ésteres/farmacologia , Ésteres/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores
6.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063006

RESUMO

Breast cancer is a major malignancy among women, characterized by a high mortality rate. The available literature evidence indicates that selenium, as a trace element, has chemopreventive properties against many types of cancer; as such, compounds containing it in their structure may potentially exhibit anticancer activity. Accordingly, we have undertaken a study to evaluate the effects of novel selenoesters (EDAG-1, -7, -8, -10) on MCF-7 and MDA-MB-231 breast cancer cells. Our analysis included investigations of cell proliferation and viability as well as cytometric determinations of apoptosis/autophagy induction, changes in mitochondrial membrane polarity (ΔΨm), caspase 3/7, 8, and 9 activities, and Bax, Bcl-2, p53, Akt, AMPK, and LC3A/B proteins. The obtained data revealed that the tested derivatives are highly cytotoxic and inhibit cell proliferation even at nanomolar doses (0.41-0.79 µM). Importantly, their strong proapoptotic properties (↑ caspase 3/7) are attributable to the effects on both the extrinsic (↑ caspase 8) and intrinsic (↓ ΔΨm and Bcl-2, ↑ Bax, p53, and caspase 9) pathways of apoptosis. Moreover, the tested compounds are autophagy activators (↓ Akt, ↑ autophagosomes and autolysosomes, AMPK, LC3A/B). In summary, the potent anticancer activity suggests that the tested compounds may be promising drug candidates for future breast cancer therapy.


Assuntos
Antineoplásicos , Apoptose , Autofagia , Proliferação de Células , Neoplasias de Mama Triplo Negativas , Humanos , Apoptose/efeitos dos fármacos , Feminino , Proliferação de Células/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Compostos Organosselênicos/química , Sobrevivência Celular/efeitos dos fármacos , Ésteres/química , Ésteres/farmacologia , Células MCF-7
7.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982886

RESUMO

In 2020, breast cancer became the most frequently diagnosed type of cancer, with nearly 2.3 million new cases diagnosed. However, with early diagnosis and proper treatment, breast cancer has a good prognosis. Here, we investigated the effect of thiosemicarbazide derivatives, previously identified as dual inhibitors targeting topoisomerase IIα and indoleamine-2,3-dioxygenase 1 (IDO 1), on two distinct types of breast cancer cells (MCF-7 and MDA-MB-231). The investigated compounds (1-3) selectively suppressed the growth of breast cancer cells and promoted apoptosis via caspase-8- and caspase-9-related pathways. Moreover, these compounds caused S-phase cell cycle arrest and dose-dependently inhibited the activity of ATP-binding cassette transporters (MDR1, MRP1/2 and BCRP) in MCF-7 and MDA-MB-231 cells. Additionally, following incubation with compound 1, an increased number of autophagic cells within both types of the investigated breast cancer cells was observed. During preliminary testing of ADME-Tox properties, the possible hemolytic activities of compounds 1-3 and their effects on specific cytochrome P450 enzymes were evaluated.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Semicarbazidas/farmacologia
8.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982588

RESUMO

Since the role of sialome-Siglec axis has been described as a regulatory checkpoint of immune homeostasis, the promotion of stimulatory or inhibitory Siglec-related mechanisms is crucial in cancer progression and therapy. Here, we investigated the effect of tamoxifen on the sialic acid-Siglec interplay and its significance in immune conversion in breast cancer. To mimic the tumour microenvironment, we used oestrogen-dependent or oestrogen-independent breast cancer cells/THP-1 monocytes transwell co-cultures exposed to tamoxifen and/or ß-estradiol. We found changes in the cytokine profiles accompanied by immune phenotype switching, as measured by the expression of arginase-1. The immunomodulatory effects of tamoxifen in THP-1 cells occurred with the altered SIGLEC5 and SIGLEC14 genes and the expression of their products, as confirmed by RT-PCR and flow cytometry. Additionally, exposure to tamoxifen increased the binding of Siglec-5 and Siglec-14 fusion proteins to breast cancer cells; however, these effects appeared to be unassociated with oestrogen dependency. Our results suggest that tamoxifen-induced alterations in the immune activity of breast cancer reflect a crosstalk between the Siglec-expressing cells and the tumour's sialome. Given the distribution of Siglec-5/14, the expression profile of inhibitory and activatory Siglecs in breast cancer patients may be useful in the verification of therapeutic strategies and predicting the tumour's behaviour and the patient's overall survival.


Assuntos
Neoplasias , Tamoxifeno , Humanos , Tamoxifeno/farmacologia , Antígenos CD/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Células THP-1 , Estrogênios/farmacologia
9.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047765

RESUMO

Combining chemotherapy with immunotherapy still remains a regimen in anticancer therapy. Novel 4-thiazolidinone-bearing hybrid molecules possess well-documented anticancer activity, and together with anti-HER2 antibodies, may represent a promising strategy in treating patients with gastric cancer with confirmed human epidermal growth factor receptor 2 (HER2) expression. The aim of the study was to synthesize a new 4-thiazolidinone derivative (Les-4367) and investigate its molecular mechanism of action in combination with trastuzumab or pertuzumab in human AGS gastric cancer cells. AGS cell viability and antiproliferative potential were examined. The effect of the tested combinations as well as monotherapy on apoptosis and autophagy was also determined. Metalloproteinase-2 (MMP-2), intercellular adhesion molecule 1 (ICAM-1), pro-inflammatory and anti-inflammatory cytokine concentrations were also demonstrated by the ELISA technique. We proved that pertuzumab and trastuzumab were very effective in increasing the sensitivity of AGS gastric cancer cells to novel Les-4367. The molecular mechanism of action of the tested combination is connected with the induction of apoptosis. Additionally, the anticancer activity is not associated with the autophagy process. Decreased concentrations of pro-inflammatory cytokines, MMP-2 and ICAM-1-were observed. The novel combination of drugs based on anti-HER2 antibodies with Les-4367 is a promising strategy against AGS gastric cancer cells.


Assuntos
Neoplasias Gástricas , Tiazolidinas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Molécula 1 de Adesão Intercelular , Metaloproteinase 2 da Matriz , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Trastuzumab/farmacologia , Tiazolidinas/farmacologia
10.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240221

RESUMO

A series of new ursolic acid (UA) derivatives substituted with various amino acids (AAs) or dipeptides (DP) at the C-3 position of the steroid skeleton was designed and synthesized. The compounds were obtained by the esterification of UA with the corresponding AAs. The cytotoxic activity of the synthesized conjugates was determined using the hormone-dependent breast cancer cell line MCF-7 and the triple-negative breast cancer cell line MDA. Three derivatives (l-seryloxy-, l-prolyloxy- and l-alanyl-l-isoleucyloxy-) showed micromolar IC50 values and reduced the concentrations of matrix metalloproteinases 2 and 9. Further studies revealed that for two compounds (l-seryloxy- and l-alanyl-l-isoleucyloxy-), a possible mechanism of their antiproliferative action is the activation of caspase-7 and the proapoptotic Bax protein in the apoptotic pathway. The third compound (l-prolyloxy- derivative) showed a different mechanism of action as it induced autophagy as measured by an increase in the concentrations of three autophagy markers: LC3A, LC3B, and beclin-1. This derivative also showed statistically significant inhibition of the proinflammatory cytokines TNF-α and IL-6. Finally, for all synthesized compounds, we computationally predicted their ADME properties as well as performed molecular docking to the estrogen receptor to assess their potential for further development as anticancer agents.


Assuntos
Antineoplásicos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Estrutura Molecular , Ácido Ursólico
11.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743130

RESUMO

Several authorities have implied that nanotechnology has a significant future in the development of advanced cancer therapies. Nanotechnology makes it possible to simultaneously administer drug combinations and engage the immune system to fight cancer. Nanoparticles can locate metastases in different organs and deliver medications to them. Using them allows for the effective reduction of tumors with minimal toxicity to healthy tissue. Transition-metal nanoparticles, through Fenton-type or Haber-Weiss-type reactions, generate reactive oxygen species. Through oxidative stress, the particles induce cell death via different pathways. The main limitation of the particles is their toxicity. Certain factors can control toxicity, such as route of administration, size, aggregation state, surface functionalization, or oxidation state. In this review, we attempt to discuss the effects and toxicity of transition-metal nanoparticles.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Elementos de Transição , Nanopartículas Metálicas/uso terapêutico , Nanotecnologia , Neoplasias/tratamento farmacológico , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Elementos de Transição/farmacologia
12.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955735

RESUMO

Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.


Assuntos
Quempferóis , Neoplasias Gástricas , Ácidos Cumáricos , Flavonoides/farmacologia , Fucosiltransferases , Humanos , Quempferóis/farmacologia , NF-kappa B/metabolismo , Neoplasias Gástricas/patologia
13.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361924

RESUMO

Oncological diseases have currently reached an epidemic scale, especially in industrialized countries. Such a situation has prompted complex studies in medicinal chemistry focused on the research and development of novel effective anticancer drugs. In this review, the data concerning new 4-thiazolidinone-bearing hybrid molecules with potential anticancer activity reported during the period from the years 2017-2022 are summarized. The main emphasis is on the application of molecular hybridization methodologies and strategies in the design of small molecules as anticancer agents. Based on the analyzed data, it was observed that the main directions in this field are the hybridization of scaffolds, the hybrid-pharmacophore approach, and the analogue-based drug design of 4-thiazolidinone cores with early approved drugs, natural compounds, and privileged heterocyclic scaffolds. The mentioned design approaches are effective tools/sources for the generation of hit/lead compounds with anticancer activity and will be relevant to future studies.


Assuntos
Antineoplásicos , Desenho de Fármacos , Tiazolidinas/farmacologia , Tiazolidinas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Química Farmacêutica
14.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232888

RESUMO

Scorzonera hispanica is an herbaceous perennial cultivated in Central and Southern Europe. This study aimed to qualitatively and quantitatively evaluate the composition of oil, extracts, and fractions (SH1-SH12) obtained from S. hispanica seeds. Furthermore, an evaluation of biological activities in breast cancer cell lines was also performed. GC-MS analysis revealed that the primary components of the seed oil (SH12) were fatty acids and ß-sitosterol. In the evaluation of extracts (SH1-SH3, SH8-SH10) and fractions (SH4-SH7, SH11) composition, the presence of apigenin, derivatives of p-coumaric and caffeic acids, was reported. In the biological assays, methanolic extract (SH1), diethyl ether (SH4), and chloroform (SH11) fractions exhibited cytotoxicity toward cells. The highest activity was observed for fatty acids- and 3,4-dimethoxycinnamate-rich SH11 (IC50: 399.18 µg/mL for MCF-7, 781.26 µg/mL for MDA-MB-231). SH11 was also observed to induce apoptosis in MCF-7 cells (52.4%). SH1, SH4, and SH11 attenuate signaling pathways and affect the expression of apoptosis-, autophagy-, and inflammation-related proteins. SH12 was non-toxic toward either cancer or normal cell lines in concentrations up to 1 mg/mL. The results suggest that S. hispanica seeds exhibit a wide range of potential uses as a source of oil and bioactive compounds for complementary therapy of breast cancer.


Assuntos
Neoplasias da Mama , Scorzonera , Apigenina , Neoplasias da Mama/tratamento farmacológico , Ácidos Cafeicos , Clorofórmio , Éter , Ácidos Graxos/farmacologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Células MCF-7 , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Sementes
15.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456915

RESUMO

It was established that the synthesis of hybrid molecules containing a thiazolidinone and a (2Z)-2-chloro-3-(4-nitrophenyl)prop-2-ene structural fragments is an effective approach for the design of potential anticancer agents. Given the results of the previous SAR-analysis, the aim of the study was to synthesize a novel 4-thiazolidinone derivative Les-3331 and investigate its molecular mechanism of action in MCF-7 and MDA-MB-231 breast cancer cells. The cytotoxic properties and antiproliferative potential of Les-3331 were determined. The effect of the tested compound on apoptosis induction and mitochondrial membrane potential was checked by flow cytometry. ELISA was used to determine caspase-8 and caspase-9, LC3A, LC3B, Beclin-1, and topoisomerase II concentration. Additionally, PAMPA, in silico or in vitro prediction of metabolism, CYP3A4/2D6 inhibition, and an Ames test were performed. Les-3331 possesses high cytotoxic and antiproliferative activity in MCF-7 and MDA-MB-231 breast cancer cells. Its molecular mechanism of action is associated with apoptosis induction, decreased mitochondrial membrane potential, and increased caspase-9 and caspase-8 concentrations. Les-3331 decreased LC3A, LC3B, and Beclin-1 concentration in tested cell lines. Topoisomerase II concentration was also lowered. The most probable metabolic pathways and no DDIs risk of Les-3331 were confirmed in in vitro assays. Our studies confirmed that a novel 4-thiazolidinone derivative represents promising anti-breast cancer activity.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/química , Apoptose , Proteína Beclina-1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , DNA Topoisomerases Tipo II/metabolismo , Feminino , Humanos , Nitrofenóis
16.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296570

RESUMO

Based on the results of previous work, we designed and synthesized 1,3,4-thiadiazole derivatives. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and a normal cell line (fibroblasts). The results showed that all compounds displayed weak anticancer activity towards two breast cancer lines: an estrogen-dependent cell line (MCF-7) and an estrogen-independent cell line (MDA-MB-231). The compound most active towards MCF-7 breast cancer cells was SCT-4, which decreased DNA biosynthesis to 70% ± 3 at 100 µM. The mechanism of the anticancer action of 1,3,4-thiadiazole was also investigated. We choose a set of the most investigated proteins, which are attractive anticancer targets. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds but the most likely mechanism of action for the new compounds is connected with the activity of caspase 8.


Assuntos
Antineoplásicos , Neoplasias da Mama , Tiadiazóis , Humanos , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Caspase 8 , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células , Neoplasias da Mama/tratamento farmacológico , Estrogênios/farmacologia , DNA/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
17.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335177

RESUMO

We designed and synthesized the 1,3,4-thiadiazole derivatives differing in the structure of the substituents in C2 and C5 positions. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and normal cell line (fibroblasts). The results showed that in both breast cancer cell lines, the strongest anti-proliferative activity was exerted by 2-(2-trifluorometylophenylamino)-5-(3-methoxyphenyl)-1,3,4-thiadiazole. The IC50 values of this compound against MCF-7 and MDA-MB-231 breast cancer cells were 49.6 µM and 53.4 µM, respectively. Importantly, all new compounds had weaker cytotoxic activity on normal cell line than on breast cancer cell lines. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds. The most likely mechanism of action for the new compounds is connected with the activities of Caspase 3 and Caspase 8 and activation of BAX proteins.


Assuntos
Tiadiazóis , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Células MCF-7 , Tiadiazóis/farmacologia
18.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234755

RESUMO

Novel pyridine-thiazole hybrid molecules were synthesized and subjected to physico-chemical characterization and screening of their cytotoxic action towards a panel of cell lines derived from different types of tumors (carcinomas of colon, breast, and lung, glioblastoma and leukemia), and normal human keratinocytes, for comparison. High antiproliferative activity of the 3-(2-fluorophenyl)-1-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-propenone 3 and 4-(2-{1-(2-fluorophenyl)-3-[4-methyl-2-(pyridin-2-ylamino)-thiazol-5-yl]-3-oxopropylsulfanyl}-acetylamino)-benzoic acid ethyl ester 4 was revealed. The IC50 of the compound 3 in HL-60 cells of the acute human promyelocytic leukemia was 0.57 µM, while in the pseudo-normal human cell lines, the IC50 of this compound was >50 µM, which suggests that the compounds 3 and 4 might be perspective anticancer agents. The detected selectivity of the derivatives 3 and 4 for cancer cell lines inspired us to study the mechanisms of their cytotoxic action. It was shown that preincubation of tumor cells with Fluzaparib (inhibitor of PARP1) reduced the cytotoxic activity of the derivatives 3 and 4 by more than twice. The ability of these compounds to affect DNA nativity and cause changes in nucleus morphology allows for the suggestion that the mechanism of action of the novel pyridine-thiazole derivatives might be related to inducing the genetic instability in tumor cells.


Assuntos
Antineoplásicos , Leucemia , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Benzoico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , DNA/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/farmacologia , Humanos , Estrutura Molecular , Piridinas/farmacologia , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia
19.
J Enzyme Inhib Med Chem ; 36(1): 535-548, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33522320

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in men and in women. The impact of the new pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide (MM-129) was evaluated against human colon cancer in vitro and in zebrafish xenografts. Our results show that this new synthesised compound effectively inhibits cell survival in BTK-dependent mechanism. Its effectiveness is much higher at a relatively low concentration as compared with the standard chemotherapy used for CRC, i.e. 5-fluorouracil (5-FU). Flow cytometry analysis after annexin V-FITC and propidium iodide staining revealed that apoptosis was the main response of CRC cells to MM-129 treatment. We also found that MM-129 effectively inhibits tumour development in zebrafish embryo xenograft model, where it showed a markedly synergistic anticancer effect when used in combination with 5-FU. The above results suggest that this novel heterofused 1,2,4-triazine derivative may be a promising candidate for further evaluation as chemotherapeutic agent against CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Triazinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química , Células Tumorais Cultivadas , Peixe-Zebra
20.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066212

RESUMO

The genus Scorzonera comprises nearly 200 species, naturally occurring in Europe, Asia, and northern parts of Africa. Plants belonging to the Scorzonera genus have been a significant part of folk medicine in Asia, especially China, Mongolia, and Turkey for centuries. Therefore, they have become the subject of research regarding their phytochemical composition and biological activity. The aim of this review is to present and assess the phytochemical composition, and bioactive potential of species within the genus Scorzonera. Studies have shown the presence of many bioactive compounds like triterpenoids, sesquiterpenoids, flavonoids, or caffeic acid and quinic acid derivatives in extracts obtained from aerial and subaerial parts of the plants. The antioxidant and cytotoxic properties have been evaluated, together with the mechanism of anti-inflammatory, analgesic, and hepatoprotective activity. Scorzonera species have also been investigated for their activity against several bacteria and fungi strains. Despite mild cytotoxicity against cancer cell lines in vitro, the bioactive properties in wound healing therapy and the treatment of microbial infections might, in perspective, be the starting point for the research on Scorzonera species as active agents in medical products designed for miscellaneous skin conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Scorzonera/química , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA