Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2302528120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527346

RESUMO

Throughout the COVID-19 pandemic, policymakers have proposed risk metrics, such as the CDC Community Levels, to guide local and state decision-making. However, risk metrics have not reliably predicted key outcomes and have often lacked transparency in terms of prioritization of false-positive versus false-negative signals. They have also struggled to maintain relevance over time due to slow and infrequent updates addressing new variants and shifts in vaccine- and infection-induced immunity. We make two contributions to address these weaknesses. We first present a framework to evaluate predictive accuracy based on policy targets related to severe disease and mortality, allowing for explicit preferences toward false-negative versus false-positive signals. This approach allows policymakers to optimize metrics for specific preferences and interventions. Second, we propose a method to update risk thresholds in real time. We show that this adaptive approach to designating areas as "high risk" improves performance over static metrics in predicting 3-wk-ahead mortality and intensive care usage at both state and county levels. We also demonstrate that with our approach, using only new hospital admissions to predict 3-wk-ahead mortality and intensive care usage has performed consistently as well as metrics that also include cases and inpatient bed usage. Our results highlight that a key challenge for COVID-19 risk prediction is the changing relationship between indicators and outcomes of policy interest. Adaptive metrics therefore have a unique advantage in a rapidly evolving pandemic context.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Benchmarking , Cuidados Críticos
2.
Proc Natl Acad Sci U S A ; 113(51): 14574-14581, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27994161

RESUMO

Over 20,000 rabies deaths occur annually in India, representing one-third of global human rabies. The Indian state of Tamil Nadu has pioneered a "One Health" committee to address the challenge of rabies in dogs and humans. Currently, rabies control in Tamil Nadu involves postexposure vaccination of humans after dog bites, whereas potential supplemental approaches include canine vaccination and sterilization. We developed a data-driven rabies transmission model fit to human rabies autopsy data and human rabies surveillance data from Tamil Nadu. Integrating local estimates for canine demography and costs, we predicted the impact of canine vaccination and sterilization on human health outcomes and evaluated cost-effectiveness according to the WHO criteria for India, which correspond to thresholds of $1,582 and $4,746 per disability-adjusted life-years (DALYs) for very cost-effective and cost-effective strategies, respectively. We found that highly feasible strategies focused on stray dogs, vaccinating as few as 7% of dogs annually, could very cost-effectively reduce human rabies deaths by 70% within 5 y, and a modest expansion to vaccinating 13% of stray dogs could cost-effectively reduce human rabies by almost 90%. Through integration over parameter uncertainty, we find that, for a cost-effectiveness threshold above $1,400 per DALY, canine interventions are at least 95% likely to be optimal. If owners are willing to bring dogs to central point campaigns at double the rate that campaign teams can capture strays, expanded annual targets become cost-effective. This case study of cost-effective canine interventions in Tamil Nadu may have applicability to other settings in India and beyond.


Assuntos
Controle de Doenças Transmissíveis/economia , Raiva/economia , Raiva/prevenção & controle , Animais , Mordeduras e Picadas/economia , Análise Custo-Benefício , Demografia , Doenças do Cão/economia , Doenças do Cão/prevenção & controle , Cães , Feminino , Custos de Cuidados de Saúde , Humanos , Índia/epidemiologia , Masculino , Saúde Única , Sensibilidade e Especificidade , Vacinação/economia
3.
Proc Biol Sci ; 283(1842)2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852799

RESUMO

Rabies causes more than 24 000 human deaths annually in Sub-Saharan Africa. The World Health Organization recommends annual canine vaccination campaigns with at least 70% coverage to control the disease. While previous studies have considered optimal coverage of animal rabies vaccination, variation in the frequency of vaccination campaigns has not been explored. To evaluate the cost-effectiveness of rabies canine vaccination campaigns at varying coverage and frequency, we parametrized a rabies virus transmission model to two districts of northwest Tanzania, Ngorongoro (pastoral) and Serengeti (agro-pastoral). We found that optimal vaccination strategies were every 2 years, at 80% coverage in Ngorongoro and annually at 70% coverage in Serengeti. We further found that the optimality of these strategies was sensitive to the rate of rabies reintroduction from outside the district. Specifically, if a geographically coordinated campaign could reduce reintroduction, vaccination campaigns every 2 years could effectively manage rabies in both districts. Thus, coordinated campaigns may provide monetary savings in addition to public health benefits. Our results indicate that frequency and coverage of canine vaccination campaigns should be evaluated simultaneously and tailored to local canine ecology as well as to the risk of disease reintroduction from surrounding regions.


Assuntos
Doenças do Cão/prevenção & controle , Programas de Imunização , Vacina Antirrábica/uso terapêutico , Raiva/prevenção & controle , Vacinação/veterinária , Animais , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Cães , Humanos , Raiva/epidemiologia , Vírus da Raiva , Tanzânia/epidemiologia
4.
medRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824769

RESUMO

Throughout the COVID-19 pandemic, policymakers have proposed risk metrics, such as the CDC Community Levels, to guide local and state decision-making. However, risk metrics have not reliably predicted key outcomes and often lack transparency in terms of prioritization of false positive versus false negative signals. They have also struggled to maintain relevance over time due to slow and infrequent updates addressing new variants and shifts in vaccine- and infection-induced immunity. We make two contributions to address these weaknesses of risk metrics. We first present a framework to evaluate predictive accuracy based on policy targets related to severe disease and mortality, allowing for explicit preferences toward false negative versus false positive signals. This approach allows policymakers to optimize metrics for specific preferences and interventions. Second, we propose a novel method to update risk thresholds in real-time. We show that this adaptive approach to designating areas as "high risk" improves performance over static metrics in predicting 3-week-ahead mortality and intensive care usage at both state and county levels. We also demonstrate that with our approach, using only new hospital admissions to predict 3-week-ahead mortality and intensive care usage has performed consistently as well as metrics that also include cases and inpatient bed usage. Our results highlight that a key challenge for COVID-19 risk prediction is the changing relationship between indicators and outcomes of policy interest. Adaptive metrics therefore have a unique advantage in a rapidly evolving pandemic context. Significance Statement: In the rapidly-evolving COVID-19 pandemic, public health risk metrics often become less relevant over time. Risk metrics are designed to predict future severe disease and mortality based on currently-available surveillance data, such as cases and hospitalizations. However, the relationship between cases, hospitalizations, and mortality has varied considerably over the course of the pandemic, in the context of new variants and shifts in vaccine- and infection-induced immunity. We propose an adaptive approach that regularly updates metrics based on the relationship between surveillance inputs and future outcomes of policy interest. Our method captures changing pandemic dynamics, requires only hospitalization input data, and outperforms static risk metrics in predicting high-risk states and counties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA