RESUMO
Coiled coils are among the most abundant tertiary and quaternary structures found in proteins. A growing body of evidence suggests that long-range synergistic interactions among solvent-exposed residues can contribute substantially to coiled-coil conformational stability, but our understanding of the key sequence and structural prerequisites of this effect is still developing. Here, we show that the strength of synergistic interaction involving a b-position Glu (i), an f-position Tyr (i + 4), and a c-position Lys (i + 8) depends on the identity of the f-position residue, the length and stability of the coiled coil, and its oligomerization stoichiometry/surface accessibility. Combined with previous observations, these results map out predictable sequence- and structure-based criteria for enhancing coiled-coil stability by up to -0.58 kcal/mol per monomer (or -2.32 kcal/mol per coiled-coil tetramer). Our observations expand the available tools for enhancing coiled coil stability by sequence variation at solvent-exposed b-, c-, and f-positions and suggest the need to exercise care in the choice of substitutions at these positions for application-specific purposes.
Assuntos
Estrutura Secundária de Proteína , Sequência de Aminoácidos , Dicroísmo Circular , Desnaturação Proteica , SolventesRESUMO
Critical Assessment of Structure Prediction (CASP) is an organization aimed at advancing the state of the art in computing protein structure from sequence. In the spring of 2020, CASP launched a community project to compute the structures of the most structurally challenging proteins coded for in the SARS-CoV-2 genome. Forty-seven research groups submitted over 3000 three-dimensional models and 700 sets of accuracy estimates on 10 proteins. The resulting models were released to the public. CASP community members also worked together to provide estimates of local and global accuracy and identify structure-based domain boundaries for some proteins. Subsequently, two of these structures (ORF3a and ORF8) have been solved experimentally, allowing assessment of both model quality and the accuracy estimates. Models from the AlphaFold2 group were found to have good agreement with the experimental structures, with main chain GDT_TS accuracy scores ranging from 63 (a correct topology) to 87 (competitive with experiment).
Assuntos
SARS-CoV-2/química , Proteínas Virais/química , COVID-19/virologia , Genoma Viral , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , SARS-CoV-2/genética , Proteínas Virais/genética , Proteínas Viroporinas/química , Proteínas Viroporinas/genéticaRESUMO
The field of protein structure prediction has recently been revolutionized through the introduction of deep learning. The current state-of-the-art tool AlphaFold2 can predict highly accurate structures; however, it has a prohibitively long inference time for applications that require the folding of hundreds of sequences. The prediction of protein structure annotations, such as amino acid distances, can be achieved at a higher speed with existing tools, such as the ProSPr network. Here, we report on important updates to the ProSPr network, its performance in the recent Critical Assessment of Techniques for Protein Structure Prediction (CASP14) competition, and an evaluation of its accuracy dependency on sequence length and multiple sequence alignment depth. We also provide a detailed description of the architecture and the training process, accompanied by reusable code. This work is anticipated to provide a solid foundation for the further development of protein distance prediction tools.
Assuntos
Redes Neurais de Computação , Proteínas/química , Sequência de Aminoácidos , Biologia Computacional/métodos , Humanos , Conformação Proteica , Dobramento de Proteína , Elementos Estruturais de Proteínas , Alinhamento de Sequência/métodos , Design de SoftwareRESUMO
Here we show that a solvent-exposed f-position (i.e., residue 14) within a well-characterized trimeric helix bundle can facilitate a stabilizing long-range synergistic interaction involving b-position Glu10 (i.e., i - 4 relative to residue 14) and c-position Lys18 (i.e., i + 4), depending the identity of residue 14. The extent of stabilization associated with the Glu10-Lys18 pair depends primarily on the presence of a side-chain hydrogen-bond donor at residue 14; the nonpolar or hydrophobic character of residue 14 plays a smaller but still significant role. Crystal structures and molecular dynamics simulations indicate that Glu10 and Lys18 do not interact directly with each other but suggest the possibility that the proximity of residue 14 with Lys18 allows Glu10 to interact favorably with nearby Lys7. Subsequent thermodynamic experiments confirm the important role of Lys7 in the large synergistic stabilization associated with the Glu10-Lys18 pair. Our results highlight the exquisite complexity and surprising long-range synergistic interactions among b-, c-, and f-position residues within helix bundles, suggesting new possibilities for engineering hyperstable helix bundles and emphasizing the need to consider carefully the impact of substitutions at these positions for application-specific purposes.
Assuntos
Peptídeos/química , Multimerização Proteica , Solventes/química , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Termodinâmica , Temperatura de TransiçãoRESUMO
The development of chemical strategies for site-specific protein modification now enables researchers to attach polyethylene glycol (PEG) to a protein drug at one or more specific locations (i.e., protein PEGylation). However, aside from avoiding enzyme active sites or protein-binding interfaces, distinguishing the optimal PEGylation site from the available alternatives has conventionally been a matter of trial and error. As part of a continuing effort to develop guidelines for identifying optimal PEGylation sites within proteins, we show here that the impact of PEGylation at various sites within the ß-sheet model protein WW depends strongly on the identity of the PEG-protein linker. The PEGylation of Gln or of azidohomoalanine has a similar impact on WW conformational stability as does Asn-PEGylation, whereas the PEGylation of propargyloxyphenylalanine is substantially stabilizing at locations where Asn-PEGylation was destabilizing. Importantly, we find that at least one of these three site-specific PEGylation strategies leads to substantial PEG-based stabilization at each of the positions investigated, highlighting the importance of considering conjugation strategy as an important variable in selecting optimal PEGylation sites. We further demonstrate that using a branched PEG oligomer intensifies the impact of PEGylation on WW conformational stability and also show that PEG-based increases to conformational stability are strongly associated with corresponding increases in proteolytic stability.
Assuntos
Polietilenoglicóis/química , Proteínas/química , Proteínas/metabolismo , Proteólise , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica em Folha beta , Estabilidade ProteicaRESUMO
The interaction of a positively charged amino acid residue with a negatively charged residue (i.e. a salt bridge) can contribute substantially to protein conformational stability, especially when two ionic groups are in close proximity. At longer distances, this stabilizing effect tends to drop off precipitously. However, several lines of evidence suggest that salt-bridge interaction could persist at longer distances if an aromatic amino acid residue were positioned between the anion and cation. Here we explore this possibility in the context of a peptide in which a Lys residue occupies the i + 8 position relative to an i-position Glu on the solvent-exposed surface of a helix-bundle homotrimer. Variable temperature circular dichroism (CD) experiments indicate that an i + 4-position Trp enables a favorable long-range interaction between Glu and the i + 8 Lys. A substantial portion of this effect relies on the presence of a hydrogen-bond donor on the arene; however, non-polar arenes, a cyclic hydrocarbon, and an acyclic Leu side-chain can also enhance the long-range salt bridge, possibly by excluding water and ions from the space between Glu and Lys.
Assuntos
Aminoácidos/química , Ligação de Hidrogênio , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Sais/químicaRESUMO
Effective mentoring of undergraduate students is a growing requirement for the promotion of faculty at many universities. It is often challenging for young investigators to define a successful mentoring strategy, partially due to the absence of a broadly accepted definition of what mentoring should entail. To overcome this, an outcome-oriented mentoring framework was developed and used with more than 25 students over three years. It was found that a systematic mentoring approach can help students quickly realize their scientific potential and result in meaningful contributions to science. This report especially shows how the Critical Assessment of Protein Structure Prediction (CASP14) challenge was used to amplify student research efforts. As a result of this challenge, multiple publications, presentations and scholarships were awarded to the participating students. The mentoring framework continues to see much success in allowing undergraduate students, including students from underrepresented groups, to foster scientific talent and make meaningful contributions to the scientific community.
Assuntos
Tutoria , Humanos , Mentores , Estudantes , UniversidadesRESUMO
The prediction of amino acid contacts from protein sequence is an important problem, as protein contacts are a vital step towards the prediction of folded protein structures. We propose that a powerful concept from deep learning, called ensembling, can increase the accuracy of protein contact predictions by combining the outputs of different neural network models. We show that ensembling the predictions made by different groups at the recent Critical Assessment of Protein Structure Prediction (CASP13) outperforms all individual groups. Further, we show that contacts derived from the distance predictions of three additional deep neural networks-AlphaFold, trRosetta, and ProSPr-can be substantially improved by ensembling all three networks. We also show that ensembling these recent deep neural networks with the best CASP13 group creates a superior contact prediction tool. Finally, we demonstrate that two ensembled networks can successfully differentiate between the folds of two highly homologous sequences. In order to build further on these findings, we propose the creation of a better protein contact benchmark set and additional open-source contact prediction methods.
Assuntos
Biologia Computacional , Proteínas , Redes Neurais de Computação , Conformação Proteica , Dobramento de ProteínaRESUMO
Anions have long been known to engage in stabilizing interactions with electron-deficient arenes. However, the precise nature and energetic contribution of anion-π interactions to protein stability remains a subject of debate. Here, we show that placing a negatively charged Asp in close proximity to electron-rich Phe in a reverse turn within the WW domain results in a favorable interaction that increases WW conformational stability by -1.3 kcal/mol.
Assuntos
Aminoácidos/química , Peptidilprolil Isomerase de Interação com NIMA/química , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica em Folha beta , Domínios ProteicosRESUMO
Site-specific PEGylation is an important strategy for enhancing the pharmacokinetic properties of protein drugs, and has been enabled by the recent development of many chemoselective reactions for protein side-chain modification. However, the impact of these different conjugation strategies on the properties of PEG-protein conjugates is poorly understood. Here we show that the ability of PEG to enhance protein conformational stability depends strongly on the identity of the PEG-protein linker, with the most stabilizing linkers involving conjugation of PEG to planar polar groups near the peptide backbone. We also find that branched PEGs provide superior stabilization relative to their linear counterparts, suggesting additional applications for branched PEGs in protein stabilization.