Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 113(12): 1687-93, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26633559

RESUMO

BACKGROUND: In order to investigate the mechanisms of acquired resistance to trabectedin, trabectedin-resistant human myxoid liposarcoma (402-91/T) and ovarian carcinoma (A2780/T) cell lines were derived and characterised in vitro and in vivo. METHODS: Resistant cell lines were obtained by repeated exposures to trabectedin. Characterisation was performed by evaluating drug sensitivity, cell cycle perturbations, DNA damage and DNA repair protein expression. In vivo experiments were performed on A2780 and A2780/T xenografts. RESULTS: 402-91/T and A2780/T cells were six-fold resistant to trabectedin compared with parental cells. Resistant cells were found to be hypersensitive to UV light and did not express specific proteins involved in the nucleotide excision repair (NER) pathway: XPF and ERCC1 in 402-91/T and XPG in A2780/T. NER deficiency in trabectedin-resistant cells was associated with the absence of a G2/M arrest induced by trabectedin and with enhanced sensitivity (two-fold) to platinum drugs. In A2780/T, this collateral sensitivity, confirmed in vivo, was associated with an increased formation of DNA interstrand crosslinks. CONCLUSIONS: Our finding that resistance to trabectedin is associated with the loss of NER function, with a consequent increased sensitivity to platinum drugs, provides the rational for sequential use of these drugs in patients who have acquired resistance to trabectedin.


Assuntos
Antineoplásicos/farmacologia , Dioxóis/farmacologia , Compostos Organoplatínicos/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Trabectedina , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Exp Biol ; 214(Pt 1): 147-61, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21147978

RESUMO

Diversity among Conus toxins mirrors the high species diversity in the Indo-Pacific region, and evolution of both is thought to stem from feeding-niche specialization derived from intra-generic competition. This study focuses on Conus californicus, a phylogenetic outlier endemic to the temperate northeast Pacific. Essentially free of congeneric competitors, it preys on a wider variety of organisms than any other cone snail. Using molecular cloning of cDNAs and mass spectrometry, we examined peptides isolated from venom ducts to elucidate the sequences and post-translational modifications of two eight-cysteine toxins (cal12a and cal12b of type 12 framework) that block voltage-gated Na(+) channels. Based on homology of leader sequence and mode of action, these toxins are related to the O-superfamily, but differ significantly from other members of that group. Six of the eight cysteine residues constitute the canonical framework of O-members, but two additional cysteine residues in the N-terminal region define an O+2 classification within the O-superfamily. Fifteen putative variants of Cal12.1 toxins have been identified by mRNAs that differ primarily in two short hypervariable regions and have been grouped into three subtypes (Cal12.1.1-3). This unique modular variation has not been described for other Conus toxins and suggests recombination as a diversity-generating mechanism. We propose that these toxin isoforms show specificity for similar molecular targets (Na(+) channels) in the many species preyed on by C. californicus and that individualistic utilization of specific toxin isoforms may involve control of gene expression.


Assuntos
Caramujo Conus/química , Venenos de Moluscos/genética , Peptídeos/genética , Bloqueadores dos Canais de Sódio/toxicidade , Animais , Sequência de Bases , California , Clonagem Molecular , Primers do DNA/genética , Eletrofisiologia , Biblioteca Gênica , Espectrometria de Massas , Dados de Sequência Molecular , Venenos de Moluscos/análise , Venenos de Moluscos/classificação , Oceano Pacífico , Peptídeos/análise , Peptídeos/classificação , Análise de Sequência de DNA
3.
Cancer Res ; 52(15): 4190-5, 1992 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-1638533

RESUMO

Many tumor cells, including murine ADJ/PC6 plasmacytoma cells, possess an active energy dependent polyamine uptake system which selectively accumulates endogenous polyamines and structurally related compounds. We have attempted to target the cytotoxic drug chlorambucil to a tumor possessing this uptake system by conjugating it to the polyamine spermidine. Furthermore, since polyamines have a high affinity for DNA, the attachment of spermidine to chlorambucil should also facilitate its targeting to DNA. This was supported by the observation that the chlorambucil-spermidine conjugate was approximately 10,000-fold more active than chlorambucil at forming interstrand crosslinks with naked DNA. In vitro cytotoxicity and in vivo antitumor studies were carried out using the ADJ/PC6 plasmacytoma. In vitro, using [3H]thymidine incorporation to assess cell viability following a 1-h exposure to control and polyamine depleted ADJ/PC6 cells, chlorambucil-spermidine was 35- and 225-fold, respectively, more toxic than chlorambucil. The increased toxicity of the conjugate compared to chlorambucil was possibly due to enhanced DNA binding and/or facilitated uptake via the polyamine uptake system. The enhanced toxicity of the conjugate but not chlorambucil by prior polyamine depletion with difluoromethylornithine, together with the observation that the conjugate but not chlorambucil competitively inhibited spermidine uptake into tumor cells, supported the suggestion that the conjugate utilized the polyamine uptake system. In vivo following a single i.p. dose, the conjugate was 4-fold more potent than chlorambucil in its ability to inhibit ADJ/PC6 tumor growth in BALB/c mice. However, the therapeutic index was not increased. Our results support the hypothesis that polyamines linked to cytotoxics facilitate their entry into tumor cells possessing a polyamine uptake system and increase their selectivity to DNA. This may have therapeutic application in the delivery of cytotoxic agents linked to polyamines to certain tumors.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Clorambucila/análogos & derivados , Reagentes de Ligações Cruzadas/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Espermidina/análogos & derivados , Animais , Clorambucila/farmacologia , DNA de Neoplasias/metabolismo , Portadores de Fármacos , Camundongos , Plasmocitoma , Plasmídeos/efeitos dos fármacos , Espermidina/metabolismo , Espermidina/farmacologia , Timidina/metabolismo , Células Tumorais Cultivadas
5.
Nucleic Acids Res ; 20(12): 3175-8, 1992 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-1620613

RESUMO

Nitrogen mustard alkylating agents react with isolated DNA in a sequence selective manner, and the substituent attached to the drug reactive group can impose a distinct sequence preference. It is not clear however to what extent the observed DNA sequence preferences are preserved in intact cells. The highly reiterated sequence of human alpha DNA has been used to determine the sites of guanine-N7 alkylation following treatment of cells with three nitrogen mustards, mechlorethamine, uracil mustard and quinacrine mustard, known to react in isolated DNA with distinctly different sequence preferences. Alpha DNA from drug treated cells was extracted, purified, end-labeled, and a 296 base pair, singly end-labelled, fragment isolated. Following the quantitative conversion of alkylation sites to strand breaks the fragments were separated on DNA sequencing gels. Clear differences were observed between the alkylation patterns of the three compounds, and the selectivities were qualitatively similar to those predicted and observed in the same sequence alkylated in vitro. In particular the unique preferences of uracil and quinacrine mustards for 5'-PyGC-3' and 5'-GT/GPu-3' sequences, respectively, were preserved in intact cells suggesting that the pattern of sequence dependent reactivity is not grossly affected by the nuclear milieu.


Assuntos
DNA/efeitos dos fármacos , Guanina/metabolismo , Mecloretamina/farmacologia , Mostarda de Quinacrina/farmacologia , Mostarda de Uracila/farmacologia , Alquilação , Sequência de Bases , DNA/metabolismo , Humanos , Dados de Sequência Molecular , Células Tumorais Cultivadas
6.
Australas Biotechnol ; 4(5): 298-300, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7765678

RESUMO

Australian cone shell venoms are being investigated as an exciting new source of bioactive peptides as part of a new collaborative project between the 3D Centre and AMRAD. Initial studies have already revealed a number of new and novel acting peptides amongst the hundred or so small, heavily constrained peptides present in the venom of each cone shell. The aim of the project is to develop peptidomimetic drugs based on a selection of these native peptides.


Assuntos
Venenos de Moluscos/química , Peptídeos/química , ômega-Conotoxinas , Sequência de Aminoácidos , Animais , Disponibilidade Biológica , Desenho de Fármacos , Estabilidade de Medicamentos , Dados de Sequência Molecular , Moluscos , Venenos de Moluscos/metabolismo , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Conformação Proteica
7.
Anal Biochem ; 222(1): 236-42, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7856855

RESUMO

The quantitative polymerase chain reaction (QPCR)-based assay was used to measure DNA damage and repair to a small (523 bp) fragment of the single-copy human N-ras gene in K562 cells. Compared with previous methods DNA preparation from treated cells and the subsequent detection of the radioactive product were considerably simplified. The results demonstrated that QPCR can be used to measure damage in a small gene segment, caused by cisplatin, nitrogen, and quinacrine mustards. Drug-DNA adducts produced by two novel minor groove binding, sequence-specific molecules (AT-486 and DSB-120) could be detected at physiologically relevant concentrations of drug. For both cisplatin and nitrogen mustard the concentrations required to cause damage in cells were higher than those needed to cause equivalent damage in isolated DNA. In contrast both AT-486 and quinacrine mustard caused more damage at equimolar concentrations in cells than in isolated DNA. DSB-120, which is closely related to AT-486, was found to be 15-fold less effective than the latter at causing damage in treated cells despite similar reactivity with isolated DNA. Repair of damage caused by quinacrine mustard to the same small gene fragment was found to proceed at a constant rate over 24 h. The QPCR assay presented here is a simple quantitative method to measure damage and repair in subgene functional units such as promoters, introns, and exons.


Assuntos
Antineoplásicos/toxicidade , Dano ao DNA , Reparo do DNA , Reação em Cadeia da Polimerase , Sequência de Bases , Primers do DNA , Humanos , Dados de Sequência Molecular , Células Tumorais Cultivadas
8.
Biochemistry ; 37(45): 15621-30, 1998 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-9843366

RESUMO

alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha3 beta2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha3 beta2 interface. Here we describe the three-dimensional solution structure of MII determined using 2D 1H NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 A for the backbone atoms and 0.34 A for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha3beta2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.


Assuntos
Conotoxinas , Venenos de Moluscos/química , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Sequência de Aminoácidos , Animais , Simulação por Computador , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Prótons , Caramujos , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA