RESUMO
The Varicella-zoster virus (VZV), classified as a neurotropic member of the Herpesviridae family, exhibits a characteristic pathogenicity, predominantly inducing varicella, commonly known as chickenpox, during the initial infectious phase, and triggering the reactivation of herpes zoster, more commonly recognized as shingles, following its emergence from a latent state. The pathogenesis of VZV-associated neuroinflammation involves a complex interplay between viral replication within sensory ganglia and immune-mediated responses that contribute to tissue damage and dysfunction. Upon primary infection, VZV gains access to sensory ganglia, establishing latent infection within neurons. During reactivation, the virus can spread along sensory nerves, triggering a cascade of inflammatory mediators, chemokines, and immune cell infiltration in the affected neural tissues. The role of both adaptive and innate immune reactions, including the contributions of T and B cells, macrophages, and dendritic cells, in orchestrating the immune-mediated damage in the central nervous system is elucidated. Furthermore, the aberrant activation of the natural defence mechanism, characterised by the dysregulated production of immunomodulatory proteins and chemokines, has been implicated in the pathogenesis of VZV-induced neurological disorders, such as encephalitis, myelitis, and vasculopathy. The intricate balance between protective and detrimental immune responses in the context of VZV infection emphasises the necessity for an exhaustive comprehension of the immunopathogenic mechanisms propelling neuroinflammatory processes. Despite the availability of vaccines and antiviral therapies, VZV-related neurological complications remain a significant concern, particularly in immunocompromised individuals and the elderly. Elucidating these mechanisms might facilitate the emergence of innovative immunomodulatory strategies and targeted therapies aimed at mitigating VZV-induced neuroinflammatory damage and improving clinical outcomes. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of VZV infections.
Assuntos
Herpesvirus Humano 3 , Humanos , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 3/patogenicidade , Herpes Zoster/virologia , Herpes Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Doenças do Sistema Nervoso/virologia , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/etiologia , Animais , Varicela/virologia , Varicela/imunologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologiaRESUMO
Silver nanoparticle composites have abundant biomedical applications due to their unique antibacterial properties. In the current work, green tea leaf extract was used as a natural reducing agent to synthesize AgNPs (AgNPs) using microwave irradiation technology. Furthermore, microwave irradiation has been used for the preparation of AgNPs/chitosan (Ch) grafted polyvinyl alcohol (PVA) hydrogel samples. To approve the accomplishment of AgNPs hydrogel polymer, UV-spectrum, TEM, and FT-IR spectrum analyses and the release of silver ions, actions were taken. The wound-healing ability of the prepared hydrogel samples was measured via both the in vitro (fibroblast cells) and the in vivo using rat models. It was found that chitosan-grafted polyvinyl alcohol, including AgNPs, exhibited excellent antibacterial activity against E. coli and S. aureus using the agar diffusion method. It can be said that microwave irradiation was successful in creating a hydrogel that contained silver nanoparticles. A wound that was still open was successfully treated with these composites.
Assuntos
Quitosana , Nanopartículas Metálicas , Ratos , Animais , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Álcool de Polivinil , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Hidrogéis/farmacologiaRESUMO
Lung cancer is a disease in which lung cells grow abnormally and uncontrollably, and the cause of it is direct smoking, secondhand smoke, radon, asbestos, and certain chemicals. The worldwide leading cause of death is lung cancer, which is responsible for more than 1.8 million deaths yearly and is expected to rise to 2.2 million by 2030. The most common type of lung cancer is non-small cell lung cancer (NSCLC), which accounts for about 80% and small cell lung cancer (SCLC), which is more aggressive than NSCLC and is often diagnosed later and accounts for 20% of cases. The global concern for lung cancer demands efficient drugs with the slightest chance of developing resistance, and the idea of multitargeted drug designing came up with the solution. In this study, we have performed multitargeted molecular docking studies of Drug Bank compounds with HTVS, SP and XP algorithms followed by MM\GBSA against the four proteins of lung cancer cellular survival and stress responses, which revealed Mitoglitazone as a multitargeted inhibitor with a docking and MM\GBSA score ranging from - 5.784 to - 7.739 kcal/mol and - 25.81 to - 47.65kcal/mol, respectively. Moreover, we performed pharmacokinetics studies and QM-based DFT analysis, showing suitable candidate and interaction pattern analysis revealed the most count of interacting residues was 4GLY, 5PHE, 6ASP, 6GLU, 6LYS, and 6THR. Further, the results were validated with SPC water model-based MD simulation for 100ns in neutralised condition, showing the cumulative deviation and fluctuation < 2Å with many intermolecular interactions. The whole analysis has suggested that Mitoglitazone can be used as a multitargeted inhibitor against lung cancer-however, experimental studies are needed before human use.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Sítios de Ligação , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Ligação Proteica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Simulação de Dinâmica Molecular , Proteínas de Choque Térmico , Detecção Precoce de Câncer , Ligação de HidrogênioRESUMO
Diabetes affects people of all ages, regardless of gender and background. To date, there is no evidence for the effect of sakuranetin against the streptozotocin (STZ)-induced diabetes paradigm. The research was directed to evaluate the antidiabetic activity of sakuranetin in the STZ model invoking the diabetes-induced disease paradigm. STZ (I.P. 60 mg/kg) is directed to induce type 2 diabetes in experimental rats. Recent research pursued to regulate the anti-diabetic ability of sakuranetin at both 10 and 20 mg/kg in STZ-induced rats. Furthermore, molecular docking research was implemented to evaluate sakuranetin requisite attraction to inflammatory indicators. Various anti-diabetic [(glucose, hemoglobin A1c (HbA1c), and insulin)], lipid profile [triglycerides (TG), total cholesterol (TC), and high-density lipoproteins (HDL)], hematological parameters [Hemoglobin (HGB), packed cell volume (PCV), red blood cells (RBC), mean corpuscular volume (MCV), platelet (PLT), and white blood cells (WBC), pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6)], antioxidant level [catalase (CAT), superoxide dismutase (SOD), glutathione (GSH)], lipid oxidation, and caspase-3 were evaluated. Furthermore, molecular docking and dynamics were performed for TNF-α (2AZ5), IL-6 (1ALU), IL-1ß (6Y8M), Caspase-3 (1NME) and serum insulin (4IBM) target ligands. Sakuranetin treatment at both doses restored the biochemical parameters i.e. blood glucose, insulin, HbA1c, lipid profile, hematological parameters, pro-inflammatory markers, antioxidant levels, lipid oxidation, and caspase-3 in the context of diabetic rats. It also showed favorable binding affinity on inflammatory markers. Sakuranetin binds to proteins 2AZ5, 1ALU, 6Y8M, 1NME, and 4IBM at -7.489, -6.381, -6.742, -7.202, and -8.166 Kcal/mol, respectively. All of the findings from the molecular dynamics simulations points toward a considerable change in the conformational dynamics of protein upon binding with sakuranetin. The potential use of sakuranetin as an alternative diabetes medication will aid future research as a potent anti-diabetic agent.Communicated by Ramaswamy H. Sarma.
RESUMO
Melanoma, a highly invasive type of skin cancer that penetrates the entire dermis layer, is associated with increased mortality rates. Excessive exposure of the skin to sunlight, specifically ultraviolet radiation, is the underlying cause of this malignant condition. The appearance of unique skin moles represents a visible clue, referred to as the "ugly duckling" sign, indicating the presence of melanoma and its association with cellular DNA damage. This research aims to explore potential biomarkers derived from microarray data, employing bioinformatics techniques and methodologies, for a thorough investigation of melanoma skin cancer. The microarray dataset for melanoma skin cancer was obtained from the GEO database, and thorough data analysis and quality control measures were performed to identify differentially expressed genes (DEGs). The top 14 highly expressed DEGs were identified, and their gene information and protein sequences were retrieved from the NCBI gene and protein database. These proteins were further analyzed for domain identification and network analysis. Gene expression analysis was conducted to visualize the upregulated and downregulated genes. Additionally, gene metabolite network analysis was carried out to understand the interactions between highly interconnected genes and regulatory transcripts. Molecular docking was employed to investigate the ligand-binding sites and visualize the three-dimensional structure of proteins. Our research unveiled a collection of genes with varying expression levels, some elevated and others reduced, which could function as promising biomarkers closely linked to the development and advancement of melanoma skin cancer. Through molecular docking analysis of the GINS2 protein, we identified two natural compounds (PubChem-156021169 and PubChem-60700) with potential as inhibitors against melanoma. This research has implications for early detection, treatment, and understanding the molecular basis of melanoma.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/metabolismo , Simulação de Acoplamento Molecular , Raios Ultravioleta , Neoplasias Cutâneas/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores , Redes Reguladoras de Genes , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismoRESUMO
The lncRNA PVT1 has emerged as a pivotal component in the intricate landscape of cancer pathogenesis, particularly in lung cancer. PVT1, situated in the 8q24 chromosomal region, has garnered attention for its aberrant expression patterns in lung cancer, correlating with tumor progression, metastasis, and poor prognosis. Numerous studies have unveiled the diverse mechanisms PVT1 contributes to lung cancer pathogenesis. It modulates critical pathways, such as cell proliferation, apoptosis evasion, angiogenesis, and epithelial-mesenchymal transition. PVT1's interactions with other molecules, including microRNAs and proteins, amplify its oncogenic influence. Recent advancements in genomic and epigenetic analyses have also illuminated the intricate regulatory networks that govern PVT1 expression. Understanding PVT1's complex involvement in lung cancer holds substantial clinical implications. Targeting PVT1 presents a promising avenue for developing novel diagnostic biomarkers and therapeutic interventions. This abstract encapsulates the expanding knowledge regarding the oncogenic role of PVT1 in lung cancer, underscoring the significance of further research to unravel its complete mechanistic landscape and exploit its potential for improved patient outcomes.
Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , MicroRNAs/genética , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genéticaRESUMO
Cervical cancer, originating from the epithelial tissue of the uterine cervix, constitutes the most commonly diagnosed malignancy among women worldwide. The predominant etiological factor underpinning cervical carcinogenesis is persistent infection with high-risk human papillomavirus (HPV) genotypes, notably HPV-16 and HPV-18. Oncoproteins encoded by high-risk HPV interfere with multiple essential cellular signaling cascades. Specifically, E5, E6, and E7 proteins disrupt the signaling pathways like p53, retinoblastoma tumor suppressor protein (pRB), The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK), and Wnt/ß-catenin, promoting HPV-mediated carcinogenesis. This dysregulation disrupts cell cycle control, apoptosis, and metastasis through modulation of microRNAs (miRNA) and key cellular processes. The novel therapeutic interventions for HPV prevention and detection are fundamental to patient management. RNA-based treatment modalities offer the potential for manipulating critical pathways involved in cervical carcinogenesis. RNA therapeutics offer novel approaches to drug development by targeting intracellular genetic elements inaccessible to conventional modalities. Additional advantages include rapid design, synthesis, and a reduced genotoxic profile compared to DNA-based therapies. Despite beneficial attributes, system stability and efficient delivery remain critical parameters. This study assessed the intricate relationship between HPV, cervical cancer, and various signaling pathways. The study explores miRNAs' diagnostic and therapeutic potential, mall interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs)in cervical cancer management. The review highlights the prospect of RNA-targeted therapies to modulate specific cancer signaling pathways. This approach offers a novel strategy for cervical cancer treatment through precise regulation of cancer signaling. Future research should concentrate on developing RNA-targeted interventions to improve cervical cancer treatment outcomes through increased therapeutic efficacy and specificity.
RESUMO
Background: The COVID-19 pandemic caused by SARS-CoV-2 has led to millions of deaths worldwide, and vaccination efficacy has been decreasing with each lineage, necessitating the need for alternative antiviral therapies. Predicting host-virus protein-protein interactions (HV-PPIs) is essential for identifying potential host-targeting drug targets against SARS-CoV-2 infection. Objective: This study aims to identify therapeutic target proteins in humans that could act as virus-host-targeting drug targets against SARS-CoV-2 and study their interaction against antiviral inhibitors. Methods: A structure-based similarity approach was used to predict human proteins similar to SARS-CoV-2 ("hCoV-2"), followed by identifying PPIs between hCoV-2 and its target human proteins. Overlapping genes were identified between the protein-coding genes of the target and COVID-19-infected patient's mRNA expression data. Pathway and Gene Ontology (GO) term analyses, the construction of PPI networks, and the detection of hub gene modules were performed. Structure-based virtual screening with antiviral compounds was performed to identify potential hits against target gene-encoded protein. Results: This study predicted 19,051 unique target human proteins that interact with hCoV-2, and compared to the microarray dataset, 1,120 target and infected group differentially expressed genes (TIG-DEGs) were identified. The significant pathway and GO enrichment analyses revealed the involvement of these genes in several biological processes and molecular functions. PPI network analysis identified a significant hub gene with maximum neighboring partners. Virtual screening analysis identified three potential antiviral compounds against the target gene-encoded protein. Conclusion: This study provides potential targets for host-targeting drug development against SARS-CoV-2 infection, and further experimental validation of the target protein is required for pharmaceutical intervention.
RESUMO
Excessive and imbalance of free radicals within the body lead to inflammation. The objective of the current research work was to explore the anti-inflammatory and antioxidant potential of the isolated compounds from Habenaria digitata. In this study, the isolated phenolic compounds were investigated for in vitro and in vivo anti-inflammatory potential along with the antioxidant enzyme. The anti-inflammatory and antioxidant potential of the phenolic compounds was assayed via various enzymes like COX-1/2, 5-LOX and ABTS, DPPH, and H2O2 free radical enzyme inhibitory assay. These compounds were also explored for their in vivo antioxidant activity like examining SOD, CAT, GSH-Px, and MDA levels in the brain, heart, and liver. The anti-inflammatory potential was evaluated using the carrageenan-induced pleurisy model in mice. On the basis of initial screening of isolated compounds, the most potent compound was further evaluated for the anti-inflammatory mechanism. Furthermore, the molecular docking study was also performed for the potent compound. The phenolic compounds were isolated and identified by GC-MS/NMR analysis by comparing its spectra to the library spectra. The isolated phenolic compounds from H. digitata were 5-methylpyrimidine-24,4-diol (1), 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one (2), 2-isopropyl-5-methylphenol (3), 3-methoxy-4-vinylphenol (4), and 2,6-dimethoxy-4-vinylphenol (5). In in vitro antioxidant assay, the most potent compound was compound 1 having IC50 values of 0.98, 0.90, and 5 µg/mL against ABTS, DPPH, and H2O2, respectively. Similarly, against COX1/2 and 5-LOX ,compound 1 was again the potent compound with IC50 values of 42.76, 10.70, and 7.40 µg/mL. Based on the in vitro results, compound 1 was further evaluated for in vivo antioxidant and anti-inflammatory potential. Findings of the study suggest that H. digitata contains active compounds with potential anti-inflammatory and antioxidant effects. These compounds could be screened as drug candidates for pharmaceutical research, targeting conditions associated with oxidative stress and inflammatory conditions in medicinal chemistry and support their ethnomedicinal use for inflammation and oxidative stress.
RESUMO
Inflammation is a protective response to a variety of infectious agents. To develop a new anti-inflammatory drug, we explored a pharmacologically important thiazole scaffold in this study. In a multi-step synthetic approach, we synthesized seven new thiazole derivatives (5a-5g). Initially, we examined the in vitro anti-inflammatory potentials of our compounds using COX-1, COX-2, and 5-LOX enzyme assays. After in vitro confirmation, the potential compounds were subjected to in vivo analgesic and anti-inflammatory studies. The hot plate method was used for analgesia, and carrageenan-induced inflammation was also assayed. Overall, all our compounds proved to be potent inhibitors of COX-2 compared to celecoxib (IC50 0.05 µM), exhibiting IC50 values in the range of 0.76-9.01 µM .Compounds 5b, 5d, and 5e were dominant and selective COX-2 inhibitors with the lowest IC50 values and selectivity index (SI) values of 42, 112, and 124, respectively. Similarly, in the COX-1 assay, our compounds were relatively less potent but still encouraging. Standard aspirin exhibited an IC50 value of 15.32 µM. In the 5-LOX results, once again, compounds 5d and 5e were dominant with IC50 values of 23.08 and 38.46 µM, respectively. Standard zileuton exhibited an IC50 value of 11.00 µM. Based on the COX/LOX and SI potencies, the compounds 5d and 5e were subjected to in vivo analgesic and anti-inflammatory studies. Compounds 5d and 5e at concentrations of 5, 10, and 20 mg/kg body weight were significant in animal models. Furthermore, we explored the potential role of compounds 5d and 5e in various phlogistic agents. Similarly, both compounds 5d and 5e were also significantly potent in the anti-nociceptive assay. The molecular docking interactions of these two compounds with the target proteins of COX and LOX further strengthened their potential for use in COX/LOX pathway inhibitions.
RESUMO
Breast cancer persists as a major problem for the world's healthcare, thus it is essential to fully understand the complex molecular processes that cause its growth and development. ncRNAs had been discovered to serve critical roles in a variety of cellular functions, including the regulation of signalling pathways. Within different pathways, the AKT/PI3K/mTOR signalling cascade has received a lot of interest because of its role in cancer. A complex interaction between ncRNAs, notably miRNAs, lncRNAs, and circRNAs, and the AKT/PI3K/mTOR signalling pathway exerts both oncogenic and tumor-suppressive activities by targeting critical components of the pathway directly or indirectly. Through miRNA-mediated post-transcriptional regulation, lncRNA-guided chromatin remodelling, and circRNA sequestration, ncRNAs modulate the activity of PI3K, AKT, and mTOR, influencing cell proliferation, survival, and metastasis. Furthermore, ncRNAs can serve as promising biomarkers for breast cancer prognosis, diagnosis, and treatment response, as their dysregulation is commonly observed in breast cancer patients. Harnessing the potential of ncRNAs as therapeutic targets or tools for restoring pathway homeostasis holds promise for innovative treatment strategies in breast cancer. Understanding the intricate regulatory networks orchestrated by ncRNAs in this context may pave the way for novel diagnostic approaches, therapeutic interventions, and a deeper comprehension of breast cancer's molecular landscape, ultimately improving patient outcomes. This abstract underscores the emerging significance of ncRNAs in the AKT/PI3K/mTOR signaling pathway in breast cancer.
Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
The genomic era has brought about a transformative shift in our comprehension of cancer, unveiling the intricate molecular landscape underlying disease development. Eye cancers (ECs), encompassing diverse malignancies affecting ocular tissues, pose distinctive challenges in diagnosis and management. Long non-coding RNAs (lncRNAs), an emerging category of non-coding RNAs, are pivotal actors in the genomic intricacies of eye cancers. LncRNAs have garnered recognition for their multifaceted roles in gene expression regulation and influence on many cellular processes. Many studies support that the lncRNAs have a role in developing various cancers. Recent investigations have pinpointed specific lncRNAs associated with ECs, including retinoblastoma and uveal melanoma. These lncRNAs exert control over critical pathways governing tumor initiation, progression, and metastasis, endowing them with the ability to function as evaluation, predictive, and therapeutic indicators. The article aims to synthesize the existing information concerning the functions of lncRNAs in ECs, elucidating their regulatory mechanisms and clinical significance. By delving into the lncRNAs' expanding relevance in the modulation of oncogenic and tumor-suppressive networks, we gain a deeper understanding of the molecular complexities intrinsic to these diseases. In our exploration of the genomic intricacies of ECs, lncRNAs introduce a fresh perspective, providing an opportunity to function as clinical and therapeutic indicators, and they also have therapeutic benefits that show promise for advancing the treatment of ECs. This comprehensive review bridges the intricate relationship between lncRNAs and ECs within the context of the genomic era.
Assuntos
RNA Longo não Codificante , Neoplasias da Retina , Retinoblastoma , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão GênicaRESUMO
A critical factor in the cause and progression of Alzheimer's disease (AD) is the growth of ß-amyloid peptide (Aß) in the brain. The mechanism of this effect is still unknown, although the effect of osthol on Aß-induced inflammation is neuroprotective in AD and supplementation with zinc might prevent or delay the onset of dementia. In the current study, by inducing APP vector in human BE (2)-M17 cells, we established a cellular model of AD and investigated the protective effect of osthol (7-methoxy-8-3-methyl-2-butenyl-2H-1-benzopyran-2-one)-zinc oxide nanoparticles. The osthol-conjugated zinc oxide nanoparticles could significantly increase cell viability by inhibiting cell apoptosis. Osthol treatment has also prevented synaptic proteins such as postsynaptic density-95 (PSD-95), synaptophysin (SYP), and synapsin-1 from decreasing in APP-induced BE (2)-M17 cells. In addition, the expression of miR-132 was significantly upregulated by osthol by triggering the Wnt/ß-catenin signaling pathway. We conclude from our observations that osthol is a potential drug for the treatment of a neurodegenerative disease, Alzheimer's. The key reason was that by upregulating miR-132, osthol could inhibit APP expression to prevent AD from occurring.
RESUMO
AIM: The present study aims to assess the antimicrobial action of three different pulp-capping agents against Enterococcus faecalis. MATERIALS AND METHODS: Three pulp-capping agents were chosen for this study: Calcicur, mineral trioxide aggregate (MTA)-Angelus, and Dycal. The zone of inhibition produced by these three pulp-capping agents was measured at 24 h and 72 h to assess their antimicrobial efficacy against E. faecalis. The agar diffusion method was used to examine the antimicrobial effect of pulp-capping agents. Mueller-Hinton agar plates were used to inoculate the microorganisms. Analysis of variance (ANOVA) and Tukey's post hoc tests were done to compare the different groups. P < 0.05 was considered as statistically significant. RESULTS: At 24 h, the highest zone of inhibition was found in MTA-Angelus (3.32 ± 0.11 mm), followed by Dycal (2.02 ± 0.46 mm) and Calcicur (1.84 ± 0.92 mm). After 72 h, MTA-Angelus demonstrated a zone of inhibition of 4.60 ± 0.22 mm, followed by Dycal (3.48 ± 0.74 mm) and Calcicur (2.90 ± 0.18 mm). ANOVA test showed a highly statistical significance. A statistically significant difference (P < 0.001) was shown between MTA-Angelus and Dycal. Calcicur did not show any significant difference. CONCLUSION: This trial found that the freshly mixed MTA-Angelus has a significantly superior antimicrobial effect against E. faecalis than Dycal and Calcicur.
RESUMO
OBJECTIVE: Dental caries is one of the most common problems of the oral cavity which is frequently observed in older people. The aim of this study is to evaluate serum C-reactive proteins (CRP) levels and to identify the correlation between dental caries and CRP levels. METHODOLOGY: The study included 12 aged patients with an average age of 65-years; the patients were diagnosed with dental caries and did not have clinical history of heart diseases, rheumatoid arthritis or any other infection. The control group consisted of 10 healthy donors with an average age of 60-years. The CRP level of positive samples was measured by using CRP Enzyme-linked immunosorbent assay-ELISA Kit. RESULTS: The currents study showed that only 5 out of 12 patients were CRP positive. CONCLUSIONS: Because of study limitations, it is early to conclude of close relationship between serum CRP and dental caries from the findings of this study; however, this study will give a clearer picture to understand the relationship between serum CRP, inflammatory cytokines and dental caries.