Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(31): 10925-10934, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486873

RESUMO

Herein, we report the synthesis of two-dimensional chiral ZnII Salen covalent organic frameworks (COFs) (2) via rapid microwave-promoted condensation of C3-symmetric 1,3,5-tris[(5-tert-butyl-3-formyl-4-hydroxyphenyl)ethynyl]benzene 1 with (1R,2R)-1,2-diaminocyclohexane in excellent yields. The synthesized chiral ZnII Salen COF (2) showed a 454 m2 g-1 BET surface area with excellent crystallinity and thermal stability. Further, the post-synthetic metal exchange reaction was performed for chiral ZnII Salen COFs (2) with Mn(OAc)2·4H2O to synthesize chiral MnIII Salen COFs (3) and utilized as an effective heterogeneous catalyst for the enantioselective epoxidation of styrenes and chromenes to afford chiral epoxides up to 72% ee. Chiral MnIII Salen COF (3) could easily be separated by centrifugation and reused up to four recycles with an observable loss in activity without impairing enantioselectivity.

2.
Chemistry ; 26(40): 8801-8809, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32353197

RESUMO

Global warming challenges are fueling the demand to develop an efficient catalytic system for the reduction of CO2 , which would contribute significantly to the control of climate change. Herein, as-synthesized bismuthoxide-decorated graphene oxide (Bi2 O3 @GO) was used as an electro/thermal catalyst for CO2 reduction. Bi2 O3 @GO is found to be distributed uniformly, as confirmed by scanning electron and transmission electron microscopic analysis. The X-ray diffraction (XRD) pattern shows that the Bi2 O3 has a ß-phase with 23.4 m2 g-1 BET surface area. Significantly, the D and G bands from Raman spectroscopic analysis and their intensity ratio (ID /IG ) reveal the increment in defective sites on GO after surface decoration. X-ray photoelectron spectroscopic (XPS) analysis shows clear signals for Bi, C, and O, along with their oxidation states. An ultra-low onset potential (-0.534 V vs. RHE) for the reduction of CO2 on Bi2 O3 @GO is achieved. Furthermore, potential-dependent (-0.534, -0.734, and -0.934 vs. RHE) bulk electrolysis of CO2 to formate provides Faradaic efficiencies (FE) of approximately 39.72, 61.48, and 83.00 %, respectively. Additionally, in time-dependent electrolysis at a potential of -0.934 versus RHE for 3 and 5 h, the observed FEs are around 84.20 % and 87.17 % respectively. This catalyst is also used for the thermal reduction of CO2 to formate. It is shown that the thermal reduction provides a path for industrial applications, as this catalyst converts a large amount of CO2 to formate (10 mm).

3.
Chem Soc Rev ; 44(21): 7540-90, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26288197

RESUMO

Core-shell nanoparticles (CSNs) are a class of nanostructured materials that have recently received increased attention owing to their interesting properties and broad range of applications in catalysis, biology, materials chemistry and sensors. By rationally tuning the cores as well as the shells of such materials, a range of core-shell nanoparticles can be produced with tailorable properties that can play important roles in various catalytic processes and offer sustainable solutions to current energy problems. Various synthetic methods for preparing different classes of CSNs, including the Stöber method, solvothermal method, one-pot synthetic method involving surfactants, etc., are briefly mentioned here. The roles of various classes of CSNs are exemplified for both catalytic and electrocatalytic applications, including oxidation, reduction, coupling reactions, etc.

4.
J Environ Manage ; 184(Pt 2): 157-169, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27697374

RESUMO

One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.


Assuntos
Agricultura , Controle de Pragas/tendências , Praguicidas/química , Animais , Composição de Medicamentos , Humanos , Insetos , Nanotecnologia
5.
Nanoscale ; 16(29): 14066-14080, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38995159

RESUMO

Transforming CO2 to CO via reverse water-gas shift (RWGS) reaction is widely regarded as a promising technique for improving the efficiency and economics of CO2 utilization processes. Moreover, it is also considered as a pathway towards e-fuels. Cu-oxide catalysts are widely explored for low-temperature RWGS reactions; nevertheless, they tend to deactivate significantly under applied reaction conditions due to the agglomeration of copper particles at elevated temperatures. Herein, we have synthesized homogeneously distributed Cu metallic nanoparticles supported on Mo2C for the RWGS reaction by a unique approach of in situ carburization of metal-organic frameworks (MOFs) using a Cu-based MOF i.e. HKUST-1 encapsulating molybdenum-based polyoxometalates. The newly derived Na-Cu-Mo2C nanocomposite catalyst system exhibits excellent catalytic performance with a CO production rate of 3230.0 mmol gcat-1 h-1 with 100% CO selectivity. Even after 250 h of a stability test, the catalyst remained active with more than 80% of its initial activity.

6.
Chem Res Toxicol ; 26(1): 26-36, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23237634

RESUMO

In vivo and in vitro systems were employed to investigate the biocompatibility of two forms of calcined mesoporous silica microparticles, MCM41-cal and SBA15-cal, with ventricular myocytes. These particles have potential clinical use in delivering bioactive compounds to the heart. Ventricular myocytes were isolated from 6 to 8 week male Wistar rats. The distribution of the particles in ventricular myocytes was investigated by transmission electron microscopy and scanning electron microscopy. The distribution of particles was also examined in cardiac muscle 10 min after intravenous injection of 2.0 mg/mL MCM41-cal. Myocyte shortening and the Ca(2+) transient were determined following exposure to 200 µg/mL MCM41-cal or SBA15-cal for 10 min. Within 10 min of incubation at 25 °C, both MCM41-cal and SBA15-cal were found attached to the plasma membrane, and some particles were observed inside ventricular myocytes. MCM41-cal was more abundant inside the myocytes than SBA15-cal. The particles had a notable affinity to mitochondrial membranes, where they eventually settled. Within 10 min of intravenous injection (2.0 mg/mL), MCM41-cal traversed the perivascular space, and some particles entered ventricular myocytes and localized around the mitochondrial membranes. The amplitude of shortening was slightly reduced in myocytes superperfused with MCM41-cal or SBA15-cal. The amplitude of the Ca(2+) transient was significantly reduced in myocytes superperfused with MCM41-cal but was only slightly reduced with SBA15-cal. Overall, the results show reasonable bioavailability and biocompatibility of MCM41-cal and SBA15-cal with ventricular myocytes.


Assuntos
Cálcio/metabolismo , Ventrículos do Coração/citologia , Miócitos Cardíacos/fisiologia , Nanopartículas/química , Dióxido de Silício/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Cálcio/química , Sobrevivência Celular/efeitos dos fármacos , Estimulação Elétrica , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Porosidade , Ratos , Ratos Wistar , Dióxido de Silício/metabolismo , Dióxido de Silício/toxicidade
7.
ACS Appl Mater Interfaces ; 15(14): 17879-17892, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995780

RESUMO

Sustainable chemistry research prioritizes reducing atmospheric carbon dioxide, and one logical solution is to develop adsorbents suitable for carbon capture and utilization. In this work, a new family of three-dimensional (3D) flower-like Mn-promoted MgO was synthesized by the coprecipitation method and used as an adsorbent for CO2 capture and a catalyst for CO2 utilization. The scanning electron microscopy (SEM) analysis of the samples shows a 3D architecture composed of thin nanosheets. The X-ray diffraction (XRD) analysis confirms the presence of the MgO with a cubic structure, while X-ray photoelectron spectroscopy (XPS) reveals the existence of Mn particles as a combination of Mn3+ and Mn4+ ions on MgO. N2 adsorption-desorption experiments highlight the beneficial contribution of Mn particles to surface area enhancement and reveal the existence of mesopores. Furthermore, the designed 3D Mn-doped MgO as an adsorbent demonstrates its capability to improve the ability of MgO to adsorb CO2 (from 0.28 mmol/g for pure MgO to 0.74 mmol/g) in ambient conditions and it is regenerable up to 9 cycles with a slight variation after the third cycle. Moreover, Mn-doped MgO shows good catalyst activity for the oxidation of ethylbenzene derivatives to carbonyl compounds in the presence of CO2 and O2. Mn-15/MgO shows excellent catalytic behavior with a conversion of 97.4 and 100% selectivity. Also, it is regenerable with an insignificant decrease in conversion (∼11.63%) after seven cycles, while the selectivity of acetophenone remains stable. The analyses of the recycled sample suggest that the chemical compositions of Mn and Mg influence the catalytic activity of those Mn-promoted MgO materials. The role of CO2 gas in the aerobic oxidation of ethylbenzene to acetophenone has also been proved. Finally, the control experiments and EPR studies reveal that the reaction takes place through the formation of radicals.

8.
Dalton Trans ; 51(6): 2452-2463, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35048925

RESUMO

In this work, we have reported a noble metal free heterogeneous photocatalyst to carry out direct (het)arene C-H arylation and solvent-free CO2 capture via single-electron transfer processes at room temperature and under pressure. The catalytic system comprises a cobalt(III) complex grafted over the silica coated magnetic support for the efficient recovery of the photocatalytic moiety without hampering its light-harvesting capability. The novel Earth-abundant cobalt(III) based photocatalyst possesses various fascinating properties such as high surface area to volume ratios, large pore volume, crystalline behaviour, high metal loading, excellent stability and reusability. The general efficacy of the highly abundant and low-cost cobalt based heterogeneous nanocatalyst was checked for the selective conversion of aryldiazonium salts into synthetically and pharmaceutically significant biaryl motifs under ambient conditions upon irradiation with visible light. The highly efficient photocatalytic conversion of carbon dioxide (CO2) to a value-added chemical was accomplished under mild reaction conditions with high selectivity, showing the added benefit of operational simplicity.

9.
Langmuir ; 27(23): 14408-18, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21951192

RESUMO

We report the synthesis, characterization, and catalytic properties of novel monodisperse SiO(2)@Pd-PAMAM core-shell microspheres containing SiO(2) microsphere cores and PAMAM dendrimer-encapsulated Pd nanoparticle (Pd-PAMAM) shells. First, SiO(2) microspheres, which were prepared by the Stöber method, were functionalized with vinyl groups by grafting their surfaces with vinyltriethoxysilane (VTS). The vinyl groups were then converted into epoxides by using m-chloroperoxybenzoic acid. Upon treatment with amine-terminated G4 poly(amidoamine) (PAMAM) dendrimers, the SiO(2)-supported epoxides underwent ring-opening and gave SiO(2)@PAMAM core-shell microspheres. Pd nanoparticles within the cores of the SiO(2)-supported PAMAM dendrimers were synthesized by letting Pd(II) ions complex with the amine groups in the cores of the dendrimers and then reducing them into Pd(0) with NaBH(4). This produced the SiO(2)@Pd-PAMAM core-shell microspheres. The presence of the different functional groups on the materials was monitored by following the changes in FTIR spectra, elemental analyses, and weight losses on thermogravimetric traces. Transmission electron microscopy (TEM) images showed the presence of Pd nanoparticles with average size of 1.56 ± 0.67 nm on the surface of the monodisperse SiO(2)@Pd-PAMAM core-shell microspheres. The SiO(2)@Pd-PAMAM core-shell microspheres were successfully used as an easily recyclable catalyst for hydrogenation of various olefins, alkynes, keto, and nitro groups, giving ~100% conversion and high turnover numbers (TONs) under 10 bar H(2) pressure, at room temperature and in times ranging from 10 min to 3 h. In addition, the SiO(2)@Pd-PAMAM core-shell microspheres were proven to be recyclable catalysts up to five times with barely any leaching of palladium into the reaction mixture.


Assuntos
Dendrímeros/química , Microesferas , Nanoestruturas/química , Paládio/química , Dióxido de Silício/química , Cápsulas/química , Catálise , Dendrímeros/síntese química , Tamanho da Partícula , Dióxido de Silício/síntese química , Propriedades de Superfície
10.
Chemistry ; 16(35): 10735-43, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20648484

RESUMO

We report a solution-phase synthetic route to copper nanoparticles with controllable size and shape. The synthesis of the nanoparticles is achieved by the reduction of copper(II) salt in aqueous solution with hydrazine under air atmosphere in the presence of poly(acrylic acid) (PAA) as capping agent. The results suggest that the pH plays a key role for the formation of pure copper nanoparticles, whereas the concentration of PAA is important for controlling the size and geometric shape of the nanoparticles. The average size of the copper nanoparticles can be varied from 30 to 80 nm, depending on the concentration of PAA. With a moderate amount of PAA, faceted crystalline copper nanoparticles are obtained. The as-synthesized copper nanoparticles appear red in color and are stable for weeks, as confirmed by UV/Vis and X-ray photoemission (XPS) spectroscopy. The faceted crystalline copper nanoparticles serve as an effective catalyst for N-arylation of heterocycles, such as the C--N coupling reaction between p-nitrobenzyl chloride and morpholine producing 4-(4-nitrophenyl)morpholine in an excellent yield under mild reaction conditions. Furthermore, the nanoparticles are proven to be versatile as they also effectively catalyze the three-component, one-pot Mannich reaction between p-substituted benzaldehyde, aniline, and acetophenone affording a 100% conversion of the limiting reactant (aniline).


Assuntos
Cobre/química , Hidrazinas/química , Nanopartículas Metálicas/química , Morfolinas/química , Nitrobenzenos/química , Sais/química , Resinas Acrílicas/química , Catálise , Cristalografia por Raios X , Estrutura Molecular , Soluções , Espectrofotometria Ultravioleta , Propriedades de Superfície
11.
Chem Res Toxicol ; 23(11): 1796-805, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20961102

RESUMO

A novel in vitro system was developed to investigate the effects of two forms of calcined mesoporous silica particles (MCM41-cal and SBA15-cal) on cellular respiration of mouse tissues. O(2) consumption by lung, liver, kidney, spleen, and pancreatic tissues was unaffected by exposure to 200 µg/mL MCM41-cal or SBA15-cal for several hours. Normal tissue histology was confirmed by light microscopy. Intracellular accumulation of the particles in the studied tissues was evident by electron microscopy. The results show reasonable in vitro biocompatibility of the mesoporous silicas with murine tissue bioenergetics.


Assuntos
Dióxido de Silício/química , Animais , Materiais Biocompatíveis/química , Metabolismo Energético , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Consumo de Oxigênio , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Tamanho da Partícula , Porosidade , Baço/efeitos dos fármacos , Baço/metabolismo
12.
Dalton Trans ; 49(21): 7210-7217, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32420571

RESUMO

Herein, we report a simple route for the synthesis of phosphonate functionalized Brønsted solid acid carbon spheres as heterogeneous catalyst for the valorization of bio-derived α-pinene oxide. The Brønsted acidity was generated via two steps; hydrothermal carbonization of sugar to produce carbon microspheres followed by PCl3 treatment to form phosphonate functionalized carbon. The presence of phosphonate was confirmed by CP-MAS 31P and 13C NMR. In addition, the presence of the P-C, O-P-C and HO-P[double bond, length as m-dash]O bonds of the phosphonate group was confirmed by FT-IR, 31P NMR, and XPS. SEM-EDAX analysis revealed the presence of a phosphorus content of ∼1.71 wt% on the surface of the catalyst while elemental mapping showed a uniform dispersion of phosphorus over the carbon spheres. The as-synthesized Brønsted solid acid catalyst was used for the isomerization of α-pinene oxide which gave 100% conversion with 67% trans-carveol selectivity in highly polar basic solvent in 1 h reaction time. Also, the catalyst showed good recyclable activity even after five cycles.


Assuntos
Monoterpenos Bicíclicos/química , Carbono/química , Monoterpenos Cicloexânicos/síntese química , Organofosfonatos/química , Catálise , Monoterpenos Cicloexânicos/química , Microesferas , Tamanho da Partícula , Propriedades de Superfície
13.
ACS Omega ; 5(24): 14291-14296, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596566

RESUMO

The gram-scale synthesis of important flavoring ketones via alkylation of acetoacetic ester on substituted benzylic carbon followed by decarboxylation using a heterogeneous, commercial, solid acid catalyst is reported. The flavoring ketones were synthesized by the alkylation of acetoacetic ester, which proceeds through an SN1-type reaction to generate an alkylated (ß-ketoester) intermediate at the benzylic carbon, which is decarboxylated under the acidic condition. Among the solid acid catalysts used, Amberlyst-15 was found to be the best catalyst under the solvent-free condition. This protocol was successfully employed for the synthesis of various flavoring ketones such as raspberry ketone and ginger ketone with almost complete conversion and 82% isolated yield. The para-donating groups on the benzylic alcohol showed a high rate of reaction. The catalyst was easily recovered and reused 6 times without losing its activity and selectivity. Moreover, this reaction was demonstrated at a 10 g scale, which implicated the potential applicability of the protocol in the industry.

14.
Dalton Trans ; 49(30): 10431-10440, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32676630

RESUMO

In this study, a facile method for the synthesis of leach proof and earth-abundant non-noble Ni nanoparticles on N-doped carbon nanotubes is reported. The catalyst was synthesized by an impregnation-carbonization method, wherein a Ni-chitosan complex upon carbonization in a 5% H2/N2 atmosphere at 800 °C yielded Ni-containing N-doped CNTs. Chitosan served as a single source of carbon and nitrogen, and the nanotube growth was facilitated by the in situ formed Ni nanoparticles. The nanocatalyst was thoroughly characterized by several techniques; elemental mapping by SEM and TEM analysis confirmed the uniform distribution of Ni nanoparticles on the surface of N-doped CNTs with an average size in the range of 10-15 nm. The catalyst efficiently reduced a variety of nitroarenes (>99%) into their corresponding amines at a moderate pressure (5 bar) and a comparatively lower temperature (80 °C). Furthermore, the easy recovery of the catalyst using an external magnetic field along with high activity and easy recyclability makes the protocol eco-friendly.


Assuntos
Aminas/síntese química , Quitosana/química , Complexos de Coordenação/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Nitrobenzenos/química , Aminas/química , Complexos de Coordenação/síntese química , Hidrogênio/química , Hidrogenação , Estrutura Molecular , Níquel/química , Tamanho da Partícula , Propriedades de Superfície
15.
Small ; 5(12): 1467-73, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19296564

RESUMO

A facile method for the synthesis of porous platinum nanoparticles by transmetallation reactions between sacrificial nickel nanoparticles and chloroplatinic acid (H(2)PtCl(6)) in solution, as well as at the constrained environment of the air-water interface, using a Langmuir-Blodgett instrumental setup is presented. To carry out the transmetallation at the air-water interface hydrophobized nickel nanoparticles are assembled as a monolayer on the sub phase containing platinum ions. The porous Pt nanoparticles obtained as a result of the reaction are found to act as extremely good catalysts for hydrogenation reaction. The products are well characterized by TEM, HRTEM, EDAX, and STEM. Attempts are made to postulate the plausible mechanism of this reaction to generate this kind of nanoparticle with controllable geometric shape and structure. This simple strategy has the potential to synthesize other nanomaterials of interest too.


Assuntos
Nanopartículas Metálicas/química , Modelos Químicos , Platina/química , Catálise , Hidrogenação , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/ultraestrutura , Níquel/química , Nitrobenzenos/química , Porosidade , Soluções
16.
ACS Omega ; 4(5): 9453-9457, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460036

RESUMO

Development of novel and greener methods for the selective oxidation of various organic compounds is a challenging task. Herein, a novel protocol for the selective oxidation of aromatic amines to nitroaromatics at room temperature is developed. The oxidation reaction was carried out using a mixture of formic acid and aqueous hydrogen peroxide, which resulted in the in situ formation of performic acid. Further, improvement of selectivity was studied using different surfactants, of which cetyltrimethylammonium bromide (CTAB) gave the highest selectivity (85%) toward nitrobenzene. The role of CTAB in achieving higher selectivity is discussed. Under optimized reaction conditions, various substituted amines were successfully oxidized to corresponding nitro compounds. It is worth mentioning that this is the first report on oxidation of amines to nitro compounds in an aqueous medium with high selectivity.

17.
Chem Commun (Camb) ; 51(40): 8496-9, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25891032

RESUMO

We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.


Assuntos
Aminas/química , Nanopartículas Metálicas/química , Paládio/química , Dióxido de Silício/química , Ácidos Sulfônicos/química , Catálise , Hidrogenação , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Porosidade
18.
J Mater Chem B ; 3(19): 3931-3939, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262615

RESUMO

We report calcium phosphate (CaP) nanocapsule crowned multiwalled carbon nanotubes (CNT-GSH-G4-CaP) as a novel platform for intracellular delivery of an anticancer drug. As a proof-of-concept, CNT-GSH-G4-CaP demonstrates release of anticancer drug doxorubicin hydrochloride (DOX) within intracellular lysosomes from the interior cavity of CNT upon pH triggered CaP dissolution. Importantly, we found that the CNT with a CaP nanolid can efficiently prevent untimely drug release at physiological pH but promotes DOX release at increased acidic milieu as observed in subcellular compartments such as lysosomes (∼5.0). This "zero premature release" characteristic is of clinical significance in delivering cytotoxic drugs, by reducing systemic toxicity and thus beneficial for the effective anticancer treatment. We envision that this pH triggered CaP crowned CNT nanosystem would lead to a new generation of self-regulated platforms for intracellular delivery of a variety of anticancer drugs.

19.
Colloids Surf B Biointerfaces ; 130: 84-92, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25909183

RESUMO

Recombinant expression of Capsicum annuum proteinase inhibitors (CanPI-13) and its application via synthetic carrier for the crop protection is the prime objective of our study. Herein, we explored proteinase inhibitor peptide immobilization on silica based nanospheres and rods followed by its pH mediated release in vitro and in vivo. Initial studies suggested silica nanospheres to be a suitable candidate for peptide immobilization. Furthermore, the interactions were characterized biophysically to ascertain their conformational stability and biological activity. Interestingly, bioactive peptide loading at acidic pH on nanospheres was found to be 62% and showed 56% of peptide release at pH 10, simulating gut milieu of the target pest Helicoverpa armigera. Additionally, in vivo study demonstrated significant reduction in insect body mass (158 mg) as compared to the control insects (265 mg) on 8th day after feeding with CanPI-13 based silica nanospheres. The study confirms that peptide immobilized silica nanosphere is capable of affecting overall growth and development of the feeding insects, which is known to hamper fecundity and fertility of the insects. Our study illustrates the utility and development of peptide-nanocarrier based platform in delivering diverse biologically active complexes specific to gut pH of H. armigera.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Glicoproteínas/administração & dosagem , Nanosferas/química , Proteínas de Plantas/administração & dosagem , Dióxido de Silício/química , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Sistema Digestório/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/administração & dosagem , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mariposas/metabolismo , Nanosferas/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
20.
ChemSusChem ; 5(1): 132-9, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22095642

RESUMO

We report the synthesis and catalytic activities of highly stable, hollow nanoreactors, called SiO(2)/Pd/h-ZrO(2), which consist of silica microsphere (SiO(2))-supported Pd nanoparticle multicores (Pd) that are encapsulated with a hollow and nanoporous ZrO(2) shell (h-ZrO(2)). The SiO(2)/Pd/h-ZrO(2) nanoreactors are fabricated by first synthesizing SiO(2)/Pd/SiO(2)/ZrO(2) microspheres, and then etching the inner SiO(2) shell with dilute NaOH solution. The hollow and nanoporous ZrO(2) shell of the nanoreactors serves two important functions: 1) it provides reactants direct access to the Pd nanoparticle multicores inside the SiO(2)/Pd/h-ZrO(2) nanoreactors during catalysis, and 2) it stabilizes the Pd nanoparticles or protects them from aggregation/sintering. The fabrication of such structures capable of protecting the Pd nanoparticles from aggregation/sintering is of particular interest considering the fact that Pd nanoparticles generally have a high tendency to aggregate because of their high surface energies. Furthermore, the structures are interesting because the Pd nanoparticles are designed and synthesized here to have 'naked' surfaces or no organic surface-passivating ligands-that are often necessary to stabilize metallic nanoparticles-in order to increase their catalytic efficiency. The resulting SiO(2)/Pd/h-ZrO(2) nanoreactors show excellent catalytic activity, as shown in the hydrogenation of olefins and nitro groups, even at room temperature under moderate hydrogen pressure. This stems from the SiO(2)/Pd/h-ZrO(2) microspheres' high surface area and their small, stable, and bare Pd nanoparticles. Furthermore, the SiO(2)/Pd/h-ZrO(2) nanoreactor catalysts remain fairly stable after reaction and can be recycled multiple times without losing their high catalytic activities.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/métodos , Paládio/química , Zircônio/química , Catálise , Microesferas , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA