RESUMO
Objectives: Acute respiratory infections because of respiratory syncytial viruses (RSVs) are among the major leading causes of morbidity and mortality in children worldwide. RSV prevalence and its contributing factors among children aged under 5 years in Ethiopia are not well studied. To assess the prevalence and associated factors of RSV infection in children aged under 5 years using influenza sentinel surveillance sites in Ethiopia. Methods: A cross-sectional study design was used utilizing influenza-like illness/sever acute respiratory illness surveillance data from January 2021 to December 2022 at the Ethiopian Public Health Institute. Results: In total, 2234 cases were included, with an overall RSV positivity rate of 16.2%. The RSV positivity rate was high in children aged under 1 year (22.8%) and during fall season (24.8%). The RSV positivity rate was significantly associated with ages under 1 year (adjusted odds ratio [AOR] 2.8, 95% confidence interval [CI]: 1.89-4.15) and 1-2 years (AOR 1.9, 95% CI: 1.26-2.73) and the fall season (AOR 1.67, 95% CI: 1.17-2.38). Conclusion: The study revealed that a considerably high RSV positivity rate was detected in children aged under 5 years. The age of children and season have a significant association with RSV positivity rate. Further studies of RSV viral genotype, clinical characteristics, and disease outcome need to be conducted for a better understanding of the virus and disease outcome.
RESUMO
SARS-CoV-2 co-infection with the influenza virus or human respiratory syncytial virus (RSV) may complicate its progress and clinical outcomes. However, data on the co-detection of SARS-CoV-2 with other respiratory viruses are limited in Ethiopia and other parts of Africa to inform evidence-based response and decision-making. We analyzed 4,989 patients' data captured from the national severe acute respiratory illness (SARI) and influenza-like illness (ILI) sentinel surveillance sites over 18 months period from January 01, 2021, to June 30, 2022. Laboratory specimens were collected from the patients and tested for viral respiratory pathogens by real-time, reverse transcription polymerase chain reaction (RT-PCR) at the national influenza center. The median age of the patients was 14 years (IQR: 1-35 years), with a slight preponderance of them being at the age of 15 to less than 50 years. SARS-CoV-2 was detected among 459 (9.2%, 95% CI: 8.4-10.0) patients, and 64 (1.3%, 95% CI: 1.0-1.6) of SARS-CoV-2 were co-detected either with Influenza virus (54.7%) or RSV (32.8%) and 12.5% were detected with both of the viruses. A substantial proportion (54.7%) of SARS-CoV-2 co-detection with other respiratory viruses was identified among patients in the age group from 15 to less than 50 years. The multivariable analysis found that the odds of SARS-CoV-2 co-detection was higher among individuals with the age category of 20 to 39 years as compared to those less than 20 years old (AOR: 1.98, 95%CI:1.15-3.42) while the odds of SARS-CoV-2 co-detection was lower among cases from other regions of the country as compared to those from Addis Ababa (AOR:0.16 95%CI:0.07-0.34). Although the SARS-CoV-2 co-detection with other respiratory viral pathogens was minimal, the findings of this study underscore that it is critical to continuously monitor the co-infections to reduce transmission and improve patient outcomes, particularly among the youth and patients with ILI.
RESUMO
BACKGROUND: The COVID-19 pandemic is one of the most devastating public health emergencies of international concern to have occurred in the past century. To ensure a safe, scalable, and sustainable response, it is imperative to understand the burden of disease, epidemiological trends, and responses to activities that have already been implemented. We aimed to analyze how COVID-19 tests, cases, and deaths varied by time and region in the general population and healthcare workers (HCWs) in Ethiopia. METHODS: COVID-19 data were captured between October 01, 2021, and September 30, 2022, in 64 systematically selected health facilities throughout Ethiopia. The number of health facilities included in the study was proportionally allocated to the regional states of Ethiopia. Data were captured by standardized tools and formats. Analysis of COVID-19 testing performed, cases detected, and deaths registered by region and time was carried out. RESULTS: We analyzed 215,024 individuals' data that were captured through COVID-19 surveillance in Ethiopia. Of the 215,024 total tests, 18,964 COVID-19 cases (8.8%, 95% CI: 8.7%- 9.0%) were identified and 534 (2.8%, 95% CI: 2.6%- 3.1%) were deceased. The positivity rate ranged from 1% in the Afar region to 15% in the Sidama region. Eight (1.2%, 95% CI: 0.4%- 2.0%) HCWs died out of 664 infected HCWs, of which 81.5% were from Addis Ababa. Three waves of outbreaks were detected during the analysis period, with the highest positivity rate of 35% during the Omicron period and the highest rate of ICU beds and mechanical ventilators (38%) occupied by COVID-19 patients during the Delta period. CONCLUSIONS: The temporal and regional variations in COVID-19 cases and deaths in Ethiopia underscore the need for concerted efforts to address the disparities in the COVID-19 surveillance and response system. These lessons should be critically considered during the integration of the COVID-19 surveillance system into the routine surveillance system.
RESUMO
BACKGROUND: Corona Virus Disease 2019 is a novel respiratory disease commonly transmitted through respiratory droplets. The disease has currently expanded all over the world with differing epidemiologic trajectories. This investigation was conducted to determine the basic clinical and epidemiological characteristics of the disease in Ethiopia. METHODS: A prospective case-ascertained study of laboratory-confirmed COVID-19 cases and their close contacts were conducted. The study included 100 COVID-19 laboratory-confirmed cases reported from May 15, 2020 to June 15, 2020 and 300 close contacts. Epidemiological and clinical information were collected using the WHO standard data collection tool developed first-few cases and contacts investigation. Nasopharyngeal and Oropharyngeal samples were collected by using polystyrene tipped swab and transported to the laboratory by viral transport media maintaining an optimal temperature. Clinical and epidemiological parameters were calculated in terms of ratios, proportions, and rates with 95% CI. RESULT: A total of 400 participants were investigated, 100 confirmed COVID-19 cases and 300 close contacts of the cases. The symptomatic proportion of cases was 23% (23) (95% CI: 15.2%-32.5%), the proportion of cases required hospitalization were 8% (8) (95%CI: 3.5%-15.2%) and 2% (95%CI: 0.24% - 7.04%) required mechanical ventilation. The secondary infection rate, secondary clinical attack rate, median incubation period and median serial interval were 42% (126) (95% CI: 36.4%-47.8%), 11.7% (35) (95% CI: 8.3%-15.9%), 7 days (IQR: 4-13.8) and 11 days (IQR: 8-11.8) respectively. The basic reproduction number (RO) was 1.26 (95% CI: 1.0-1.5). CONCLUSION: The proportion of asymptomatic infection, as well as secondary infection rate among close contacts, are higher compared to other studies. The long serial interval and low basic reproduction number might contribute to the observed slow progression of the pandemic, which gives a wide window of opportunities and time to control the spread. Testing, prevention, and control measures should be intensified.
Assuntos
COVID-19 , Coinfecção , COVID-19/epidemiologia , Etiópia/epidemiologia , Humanos , Poliestirenos , SARS-CoV-2RESUMO
BACKGROUND: Globally, the Tuberculosis treatment success rate was worse for HIV-positive TB patients compared with HIV- negative TB patients. This study aimed at determining the impact of HIV-AIDS and factors associated with TB treatment outcomes. METHODS: This study was a retrospective cohort study of five years of tuberculosis data from four public health facilities in Hosanna Town. A total of 604 study participants were included using a systematic random sampling technique. Descriptive analysis of ratios, rates, and proportions was done and binary logistic regression, bivariable and multivariable, analysis was also done. RESULT: A total of 604 TB patients were enrolled in this study. 302 (50%) were HIV co-infected. The overall treatment success rate was 90.1% (544/604). Treatment success rates are 86.4% (261/302) for TB-HIV co-infected patients and 93.7% (283/302) for non-co-infected patients. TB-HIV co-infected patients had a higher risk of an unsuccessful treatment outcome (Adjusted Relative Risk [ARR]: 2.7; 95% Confidence Interval [CI]: 1.4 - 5.2). The risk of unsuccessful treatment outcome is also higher among rural residents (ARR: 3.3; CI: 1.4 - 5.0), patients on the re-treatment category (ARR: 2.7; CI: 1.4 - 5.1), and with chronic disease (ARR: 3.3; CI: 1.3 - 8.1). CONCLUSION: TB treatment success rate is good as compared to the WHO minimum requirement. Successful treatment outcome is lower among patients with HIV infection, rural residents, patients on re-treatment, and patients with chronic disease. Therefore, due emphasis should be given to these high-risk groups.
RESUMO
INTRODUCTION: Rotavirus causes severe-diarrheal diseases in infants. An estimation of 138 million rotavirus-associated diarrheal cases and 215,000 deaths occur every year globally. In December 2016, West-Shewa zone in Ethiopia reported unidentified gastrointestinal diarrhea outbreak. We investigated to identify the causative agent of the outbreak to support response operations. METHODS: Medical records were reviewed, and the daily line list was collected from health facilities. Descriptive data analysis was done by time, person and place. Stool specimens were first tested by antigen capture enzyme immunoassay (EIA) technique and further confirmed by reverse-transcription polymerase chain reaction (RT-PCR) as a gold standard. The product of RT-PCR was genotyped for each gene using G1-G4, G8-G9 and G12 primers for VP7 gene and P(4), P(6), P(8) and P(14) primers for VP4 gene. RESULTS: A total of 1,987 diarrheal cases (5.7 per 1000) and five deaths (case-fatality rate 0.25%) were identified and epidemiologically-linked to confirmed rotavirus from December 2016 to February 2017. Among the cases, 1,946 (98%) were < 5 children. Fourteen (74%) of the 19 tested stool specimens were positive for rotavirus by EIA and RT-PCR. Majority of strains detected were G12P(6) (25%) and G-negative P(8) (25%) followed by G9P(8) (19%), G1P(8) (13%) and G3/G2 P(8), G12P(8), and G-negative P(6) (6% each). CONCLUSION: Diarrheal outbreak which occurred in West-Shewa zone of Ethiopia was associated with rotavirus and relatively more affected districts with low vaccination coverage. Routine rotavirus vaccination quality and coverage should be evaluated and the surveillance system needs to be strengthened to detect, prevent and control a similar outbreak.