Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38234798

RESUMO

Tissues are active materials where epithelial turnover, immune surveillance, and remodeling of stromal cells such as macrophages all regulate form and function. Scattering modalities such as Brillouin microscopy (BM) can non-invasively access mechanical signatures at GHz. However, our traditional understanding of tissue material properties is derived mainly from modalities which probe mechanical properties at different frequencies. Thus, reconciling measurements amongst these modalities remains an active area. Here, we compare optical tweezer active microrheology (OT-AMR) and Brillouin microscopy (BM) to longitudinally map brain development in the larval zebrafish. We determine that each measurement is able to detect a mechanical signature linked to functional units of the brain. We demonstrate that the corrected BM-Longitudinal modulus using a density factor correlates well with OT-AMR storage modulus at lower frequencies. We also show that the brain tissue mechanical properties are dependent on both the neuronal architecture and the presence of macrophages. Moreover, the BM technique is able to delineate the contributions to mechanical properties of the macrophage from that due to colony stimulating factor 1 receptor (CSF1R) mediated stromal remodeling. Here, our data suggest that macrophage remodeling is instrumental in the maintenance of tissue mechanical homeostasis during development. Moreover, the strong agreement between the OT-AM and BM further demonstrates that scattering-based technique is sensitive to both large and minute structural modification in vivo.

2.
G3 (Bethesda) ; 7(2): 719-722, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28040780

RESUMO

Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting), but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity.


Assuntos
Proteínas de Bactérias/genética , Endonucleases/genética , Edição de Genes/métodos , Marcação de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Acidaminococcus/enzimologia , Acidaminococcus/genética , Animais , Sistemas CRISPR-Cas/genética , Camundongos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA