Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 66(3): e12554, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30633359

RESUMO

Melatonin (Mel), originally considered a neurohormone, has been detected in beverages and food-fermented products in which yeast metabolism is highly important. This indolamine is synthesized from serotonin, with L-tryptophan being the initial substrate of both. Regarding Mel metabolism, the biosynthetic pathway in mammals consists in four-step reactions. However, six genes are implicated in the synthesis of Mel in plants, which suggest the presence of many pathways. The aim of this study was to provide new empirical data on the production of Mel and other indole-related compounds in the yeast Saccharomyces cerevisiae (S. cerevisiae). To this end, we performed the addition of the pathway intermediates in S. cerevisiae cells in different growth stages (exponential and arrested cells) to follow the bioconversion and new indolic compound production from them. The different bioconverted indolic compounds tested (L-tryptophan, 5-hydroxytryptophan, tryptamine, serotonin, N-acetylserotonin, 5-methoxytryptamine, and Mel) were analyzed by UHPLC-MS/MS from the extra- and intracellular contents. Our results showed that serotonin, in yeast, was prevalently formed via tryptophan decarboxylation, followed by tryptamine hydroxylation as in plants. Mel production from serotonin can be achieved by either N-acetylation, followed by O-methylation or O-methylation, in turn followed by N-acetylation. Accordingly, the classic pathway of Mel synthesis in vertebrates does not seems prevalent in yeast.


Assuntos
Melatonina/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Microorganisms ; 11(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37317089

RESUMO

Recently, the presence of melatonin in fermented beverages has been correlated with yeast metabolism during alcoholic fermentation. Melatonin, originally considered a unique product of the pineal gland of vertebrates, has been also identified in a wide range of invertebrates, plants, bacteria, and fungi in the last two decades. These findings bring the challenge of studying the function of melatonin in yeasts and the mechanisms underlying its synthesis. However, the necessary information to improve the selection and production of this interesting molecule in fermented beverages is to disclose the genes involved in the metabolic pathway. So far, only one gene has been proposed as involved in melatonin production in Saccharomyces cerevisiae, PAA1, a polyamine acetyltransferase, a homolog of the vertebrate's aralkylamine N-acetyltransferase (AANAT). In this study, we assessed the in vivo function of PAA1 by evaluating the bioconversion of the different possible substrates, such as 5-methoxytryptamine, tryptamine, and serotonin, using different protein expression platforms. Moreover, we expanded the search for new N-acetyltransferase candidates by combining a global transcriptome analysis and the use of powerful bioinformatic tools to predict similar domains to AANAT in S. cerevisiae. The AANAT activity of the candidate genes was validated by their overexpression in E. coli because, curiously, this system evidenced higher differences than the overexpression in their own host S. cerevisiae. Our results confirm that PAA1 possesses the ability to acetylate different aralkylamines, but AANAT activity does not seem to be the main acetylation activity. Moreover, we also prove that Paa1p is not the only enzyme with this AANAT activity. Our search of new genes detected HPA2 as a new arylalkylamine N-acetyltransferase in S. cerevisiae. This is the first report that clearly proves the involvement of this enzyme in AANAT activity.

3.
Microb Biotechnol ; 15(5): 1499-1510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34689412

RESUMO

Hydroxytyrosol (HT) is one of the most powerful dietary antioxidants with numerous applications in different areas, including cosmetics, nutraceuticals and food. In the present work, heterologous hydroxylase complex HpaBC from Escherichia coli was integrated into the Saccharomyces cerevisiae genome in multiple copies. HT productivity was increased by redirecting the metabolic flux towards tyrosol synthesis to avoid exogenous tyrosol or tyrosine supplementation. After evaluating the potential of our selected strain as an HT producer from glucose, we adjusted the medium composition for HT production. The combination of the selected modifications in our engineered strain, combined with culture conditions optimization, resulted in a titre of approximately 375 mg l-1 of HT obtained from shake-flask fermentation using a minimal synthetic-defined medium with 160 g l-1 glucose as the sole carbon source. To the best of our knowledge, this is the highest HT concentration produced by an engineered S. cerevisiae strain.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Meios de Cultura/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Álcool Feniletílico/análogos & derivados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Food Chem ; 308: 125646, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31654977

RESUMO

Hydroxytyrosol (HT), which is a polyphenol with a high antioxidant power and many associated health benefits, has been found in wines. Wine yeasts are capable of producing high amounts of the higher alcohol tyrosol, which is the precursor for HT synthesis. We have improved the ability of Saccharomyces cerevisiae to produce HT by heterologously expressing the HpaBC enzyme complex of Escherichia coli, which hydroxylates tyrosol into HT. By overexpressing the hpaB and hpaC genes, we achieved HT titers of 1.15 ±â€¯0.05 mg/L and 4.6 ±â€¯0.9 mg/L in a minimal medium in which either 1 mM tyrosine or 1 mM tyrosol were respectively added. This work demonstrates that the overexpression of HpaBC in yeast is a promising tool to overproduce HT at the expense of endogenous tyrosol through central carbon catabolism flux redirection to tyrosine catabolism.


Assuntos
Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Álcool Feniletílico/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Oxigenases de Função Mista/genética , Álcool Feniletílico/metabolismo , Saccharomyces cerevisiae/genética
5.
Front Microbiol ; 9: 318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541065

RESUMO

Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel's ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA