RESUMO
Over the last two decades, numerous advances in our understanding of bone cell biology and bone mineral homeostasis have been achieved. As a dynamic connective and supportive tissue, bone is constantly sensing and responding to both external mechanical forces and internal systemic and local signals. A variety of intravital imaging approaches have been investigated to identify molecular and cellular processes and to decipher signaling pathways involved in the cellular communication between different types of bone cells that form bone multicellular units. Furthermore, bone multicellular units interact with cells of the immune and hematopoietic system to maintain bone homeostasis. Bone-forming osteoblasts and bone-degrading osteoclasts are situated on the endosteal surface of bone influencing the dynamic remodeling and the regeneration of bone tissue. Osteocytes are found at very unique locations in the bone, closely surrounded by bone matrix, forming a cellular network through their interconnected dendritic processes. Bone marrow cells fill the numerous large cavities inside the bones with various blood cell lineages arising from hematopoietic stem and progenitor cells. A highly complex and interconnected network of arterial vessels and sinusoidal capillaries span through the bone marrow spaces forming an interface between the blood circulation and the bone marrow which allows cell trafficking between both compartments. Live imaging of animals using multiphoton microscopy represents a powerful approach to address the cellular behaviors of bone and bone marrow cells over time and space in their natural tissue microenvironment. The in vivo environment is crucial, because the dynamic behavior of cells is critically influenced by many tissue factors including extracellular components, cytokine and growth factor gradients, and fluid forces, such as blood flow. The review article focuses upon recent advances in multiphoton imaging technologies as well as novel experimental approaches in the understanding of the dynamic molecular and cellular mechanisms underlying bone tissue homeostasis, remodeling, and regeneration under physiological and pathological conditions. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Assuntos
Medula Óssea , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Medula Óssea/diagnóstico por imagem , Células da Medula Óssea , Osso e Ossos/diagnóstico por imagem , OsteoclastosRESUMO
Bone healing involves the interplay of immune cells, mesenchymal cells, and vasculature over the time course of regeneration. Approaches to quantify the spatiotemporal aspects of bone healing at cellular resolution during long bone healing do not yet exist. Here, a novel technique termed Limbostomy is presented, which combines intravital microendoscopy with an osteotomy. This design allows a modular combination of an internal fixator plate with a gradient refractive index (GRIN) lens at various depths in the bone marrow and can be combined with a surgical osteotomy procedure. The field of view (FOV) covers a significant area of the fracture gap and allows monitoring cellular processes in vivo. The GRIN lens causes intrinsic optical aberrations which have to be corrected. The optical system was characterized and a postprocessing algorithm was developed. It corrects for wave front aberration-induced image plane deformation and for background and noise signals, enabling us to observe subcellular processes. Exemplarily, we quantitatively and qualitatively analyze angiogenesis in bone regeneration. We make use of a transgenic reporter mouse strain with nucleargreen fluorescent protein and membrane-bound tdTomato under the Cadherin-5 promoter. We observe two phases of vascularization. First, rapid vessel sprouting pervades the FOV within 3-4 days after osteotomy. Second, the vessel network continues to be dynamically remodeled until the end of our observation time, 14 days after surgery. Limbostomy opens a unique set of opportunities and allows further insight on spatiotemporal aspects of bone marrow biology, for example, hematopoiesis, analysis of cellular niches, immunological memory, and vascularization in the bone marrow during health and disease. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Assuntos
Cristalino , Lentes , Animais , Medula Óssea , Camundongos , Camundongos Transgênicos , OsteotomiaRESUMO
CD99 is a crucial regulator of the transmigration (diapedesis) of leukocytes through the blood vessel wall. Here, we report that CD99 acts at 2 different steps in the extravasation process. In agreement with previous antibody-blocking experiments, we found that CD99 gene inactivation caused neutrophil accumulation between venular endothelial cells and the basement membrane in the inflamed cremaster. Unexpectedly, we additionally found that leukocyte attachment to the luminal surface of the venular endothelium was impaired in the absence of CD99. Intravital video microscopy revealed that CD99 supported rapid chemokine-induced leukocyte arrest. Inhibition of leukocyte attachment and extravasation were both solely due to the absence of CD99 on endothelial cells, whereas CD99 on leukocytes was irrelevant. Therefore, we searched for heterophilic ligands of endothelial CD99 on neutrophils. We found that endothelial cells bind to the paired immunoglobulinlike receptors (PILRs) in a strictly CD99-dependent way. In addition, endothelial CD99 was coprecipitated with PILRs from neutrophils that adhered to endothelial cells. Furthermore, soluble CD99 carrying a transferable biotin tag could transfer this tag covalently to PILR when incubated with intact neutrophils. Binding of neutrophils under flow to a surface coated with P-selectin fragment crystallizable (Fc) and intercellular adhesion molecule 1 (ICAM-1) Fc became more shear resistant if CD99 Fc was coimmobilized. This increased shear resistance was lost if neutrophils were preincubated with anti-PILR antibodies. We concluded that endothelial CD99 promotes leukocyte attachment to endothelium in inflamed vessels by a heterophilic ligand. In addition, CD99 binds to PILRs on neutrophils, an interaction that leads to increased shear resistance of the neutrophil attachment to ICAM-1.
Assuntos
Antígeno 12E7/metabolismo , Receptores Imunológicos/metabolismo , Animais , Adesão Celular , Movimento Celular , Endotélio Vascular , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/citologia , Camundongos , Neutrófilos/metabolismo , Ligação ProteicaRESUMO
Two-photon intravital microscopy (2P-IVM) is an advanced imaging technique that allows the visualization of dynamic cellular behavior deeply inside tissues and organs of living animals. Due to the deep tissue penetration, imaging of highly light-scattering tissue as the bone becomes feasible at subcellular resolution.To better understand the influence of blood flow on hematopoietic stem and progenitor cell (HSPC) homing to the bone marrow (BM) microvasculature of the calvarial bone, we analyzed blood flow dynamics and the influence of flow on the early homing behavior of HSPCs during their passage through BM microvessels. Here, we describe a 2P-IVM approach for direct measurements of red blood cell (RBC) velocities in the BM microvasculature using repetitive centerline scans at the level of individual arterial vessels and sinusoidal capillaries to obtain a detailed flow profile map. Furthermore, we explain the isolation and enrichment of HSPCs from long bones and the transplantation of these cells to study the early homing behavior of HSPCs in BM sinusoids at cellular resolution. This is achieved by high-resolution spatiotemporal imaging through a chronic cranial window using transgenic reporter mice.
Assuntos
Medula Óssea/irrigação sanguínea , Células-Tronco Hematopoéticas/citologia , Microvasos/metabolismo , Animais , Movimento Celular , Células Cultivadas , Feminino , Genes Reporter , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fluxo Sanguíneo Regional , Crânio/citologia , Análise Espaço-TemporalRESUMO
We have shown recently that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial-specific membrane protein, associates with vascular endothelial (VE)-cadherin and enhances VE-cadherin function in transfected cells (Nawroth, R., G. Poell, A. Ranft, U. Samulowitz, G. Fachinger, M. Golding, D.T. Shima, U. Deutsch, and D. Vestweber. 2002. EMBO J. 21:4885-4895). We show that VE-PTP is indeed required for endothelial cell contact integrity, because down-regulation of its expression enhanced endothelial cell permeability, augmented leukocyte transmigration, and inhibited VE-cadherin-mediated adhesion. Binding of neutrophils as well as lymphocytes to endothelial cells triggered rapid (5 min) dissociation of VE-PTP from VE-cadherin. This dissociation was only seen with tumor necrosis factor alpha-activated, but not resting, endothelial cells. Besides leukocytes, vascular endothelial growth factor also rapidly dissociated VE-PTP from VE-cadherin, indicative of a more general role of VE-PTP in the regulation of endothelial cell contacts. Dissociation of VE-PTP and VE-cadherin in endothelial cells was accompanied by tyrosine phoshorylation of VE-cadherin, beta-catenin, and plakoglobin. Surprisingly, only plakoglobin but not beta-catenin was necessary for VE-PTP to support VE-cadherin adhesion in endothelial cells. In addition, inhibiting the expression of VE-PTP preferentially increased tyrosine phosphorylation of plakoglobin but not beta-catenin. In conclusion, leukocytes interacting with endothelial cells rapidly dissociate VE-PTP from VE-cadherin, weakening endothelial cell contacts via a mechanism that requires plakoglobin but not beta-catenin.