RESUMO
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Assuntos
Matriz Extracelular , Longevidade , Humanos , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Envelhecimento , HomeostaseRESUMO
Cell penetrating peptides are typically nonspecific, targeting multiple cell types without discrimination. However, subsets of Cell penetrating peptides (CPP) have been found, which show a 'homing' capacity or increased likelihood of internalizing into specific cell types and subcellular locations. Therapeutics intended to be delivered to tissues with a high degree of cellular diversity, such as the intraocular space, would benefit from delivery using CPP that can discriminate across multiple cell types. Lysosomal storage diseases in the retinal pigment epithelium (RPE) can impair cargo clearance, leading to RPE atrophy and blindness. Characterizing CPP for their capacity to effectively deliver cargo to the lysosomes of different cell types may expand treatment options for lysosomal storage disorders. We developed a combinatorial library of CPP and lysosomal sorting signals, applied to ARPE19 and B3 corneal lens cells, for the purpose of determining cell line specificity and internal targeting. Several candidate classes of CPP were found to have as much as 4 times the internalization efficiency in ARPE19 compared to B3. Follow-up cargo transport studies were also performed, which demonstrate effective internalization and lysosomal targeting in ARPE19 cells.
RESUMO
The suprachiasmatic nucleus (SCN) in the brain is the master regulator of the circadian clocks throughout the human body. With increasing age the circadian clock in humans and other mammals becomes increasingly disorganized leading to a large number of more or less well-categorized problems. While a lot of aging research has focused on the peripheral clocks in tissues across organisms, it remains a paramount task to quantify aging of the most important master clock, the human SCN. Furthermore, a pipeline needs to be developed with therapies to mitigate the systemic cellular circadian dysfunction in the elderly and ultimately repair and reverse aging of the SCN itself. A disease classification for the aging SCN, Circadian Clock Neuronal Senile Atrophy (CIRCLONSA syndrome), would improve research funding and goal-oriented biotechnological entrepreneurship.