RESUMO
Cerebral Cavernous Malformation (CCM) is a disease characterized by capillary-venous lesions mostly located in the central nervous system. It occurs both as a sporadic and hereditary autosomal dominant condition. Three CCM genes have been identified and shown to encode the KRIT1 (CCM1), MGC4607 (CCM2) and PDCD10 (CCM3) proteins whose functions are so far unknown. In an attempt to get some insight into the role of the 3 CCM genes, we used in situ hybridization to conduct a comparative analysis of their expression pattern at several time points during murine embryonic, postnatal and adult stages particularly within the central nervous system. A strong expression of the 3 Ccm genes was detected in the various neuronal cell layers of the brain, cerebellum and spinal cord, from embryonic to adult life. By E14.5 a moderate labelling was observed in the heart, arterial and venous large vessels with all 3 Ccm probes. Ccm2 and Ccm3 mRNAs, but not Ccm1, were clearly detected within meningeal and parenchymal cortical vessels at P8. This expression was no more detected by P19 and in adult murine brain, strongly suggesting a role for these 2 proteins in the intensive angiogenesis process occuring within the central nervous system during this period.
Assuntos
Encéfalo/anormalidades , Desenvolvimento Embrionário , Proteínas Associadas aos Microtúbulos/genética , Proteínas Proto-Oncogênicas/genética , Animais , Vasos Sanguíneos/metabolismo , Northern Blotting , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Hibridização In Situ , Proteína KRIT1 , Camundongos , Miocárdio/metabolismo , RNA Mensageiro/genéticaRESUMO
Cerebral cavernous malformations (CCM) are vascular malformations of the central nervous system (CNS) that lead to cerebral hemorrhages. Familial CCM occurs as an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. Constitutive or tissue-specific ablation of any of the Ccm genes in mice previously established the crucial role of Ccm gene expression in endothelial cells for proper angiogenesis. However, embryonic lethality precluded the development of relevant CCM mouse models. Here, we show that endothelial-specific Ccm2 deletion at postnatal day 1 (P1) in mice results in vascular lesions mimicking human CCM lesions. Consistent with CCM1/3 involvement in the same human disease, deletion of Ccm1/3 at P1 in mice results in similar CCM lesions. The lesions are located in the cerebellum and the retina, two organs undergoing intense postnatal angiogenesis. Despite a pan-endothelial Ccm2 deletion, CCM lesions are restricted to the venous bed. Notably, the consequences of Ccm2 loss depend on the developmental timing of Ccm2 ablation. This work provides a highly penetrant and relevant CCM mouse model.
Assuntos
Proteínas de Transporte/genética , Malformações Vasculares do Sistema Nervoso Central/metabolismo , Hemorragia Cerebral/metabolismo , Endotélio Vascular/metabolismo , Proteínas dos Microfilamentos/genética , Animais , Proteínas de Transporte/metabolismo , Malformações Vasculares do Sistema Nervoso Central/genética , Malformações Vasculares do Sistema Nervoso Central/patologia , Malformações Vasculares do Sistema Nervoso Central/fisiopatologia , Cerebelo/irrigação sanguínea , Cerebelo/metabolismo , Cerebelo/patologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Modelos Animais de Doenças , Endotélio Vascular/patologia , Deleção de Genes , Humanos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Retina/metabolismo , Retina/patologia , Retina/fisiopatologiaRESUMO
Cerebral cavernous malformations (CCM) are vascular malformations of the brain that lead to cerebral hemorrhages. In 20% of CCM patients, this results from an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. High expression levels of the CCM genes in the neuroepithelium indicate that CCM lesions might be caused by a loss of function of these genes in neural cells rather than in vascular cells. However, their in vivo function, particularly during cerebral angiogenesis, is totally unknown. We developed mice with constitutive and tissue-specific CCM2 deletions to investigate CCM2 function in vivo. Constitutive deletion of CCM2 leads to early embryonic death. Deletion of CCM2 from neuroglial precursor cells does not lead to cerebrovascular defects, whereas CCM2 is required in endothelial cells for proper vascular development. Deletion of CCM2 from endothelial cells severely affects angiogenesis, leading to morphogenic defects in the major arterial and venous blood vessels and in the heart, and results in embryonic lethality at mid-gestation. These findings establish the essential role of endothelial CCM2 for proper vascular development and strongly suggest that the endothelial cell is the primary target in the cascade of events leading from CCM2 mutations to CCM cerebrovascular lesions.