Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 253, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37926818

RESUMO

BACKGROUND: Microglia, an immune cell found exclusively within the CNS, initially develop from haematopoietic stem cell precursors in the yolk sac and colonise all regions of the CNS early in development. Microglia have been demonstrated to play an important role in the development of oligodendrocytes, the myelin producing cells in the CNS, as well as in myelination. Mertk is a receptor expressed on microglia that mediates immunoregulatory functions, including myelin efferocytosis. FINDINGS: Here we demonstrate an unexpected role for Mertk-expressing microglia in both oligodendrogenesis and myelination. The selective depletion of Mertk from microglia resulted in reduced oligodendrocyte production in early development and the generation of pathological myelin. During demyelination, mice deficient in microglial Mertk had thinner myelin and showed signs of impaired OPC differentiation. We established that Mertk signalling inhibition impairs oligodendrocyte repopulation in Xenopus tadpoles following demyelination. CONCLUSION: These data highlight the importance of microglia in myelination and are the first to identify Mertk as a regulator of oligodendrogenesis and myelin ultrastructure.


Assuntos
Doenças Desmielinizantes , Bainha de Mielina , Camundongos , Animais , Bainha de Mielina/patologia , Microglia , c-Mer Tirosina Quinase/genética , Oligodendroglia/patologia , Diferenciação Celular/fisiologia , Doenças Desmielinizantes/patologia
2.
Glia ; 66(10): 2209-2220, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30208252

RESUMO

Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system (CNS). Major deficits arise in MS patients due to an inability to repair damaged myelin sheaths following CNS insult, resulting in prolonged axonal exposure and neurodegeneration. The TAM receptors (Tyro3, Axl, and Mertk) have been implicated in MS susceptibility, demyelination and remyelination. Previously, we have shown that Tyro3 regulates developmental myelination and myelin thickness within the optic nerve and rostral region of the corpus callosum (CC) of adult mice. In this study we have verified and extended our previous findings via a comprehensive analysis of axonal ensheathment and myelin thickness in the CC of unchallenged mice, following demyelination and during myelin repair. We show that the loss of the Tyro3 receptor correlates with significantly thinner myelin sheaths in both unchallenged mice and during remyelination, particularly in larger caliber axons. The hypomyelinated phenotype observed in the absence of Tyro3 occurs independently of any influence upon oligodendrocyte precursor cell (OPC) maturation, or density of oligodendrocytes (OLs) or microglia. Rather, the primary effect of Tyro3 is upon the radial expansion of myelin. The loss of Tyro3 leads to a reduction in the number of myelin lamellae on axons, and is therefore most likely a key component of the regulatory mechanism by which oligodendrocytes match myelin production to axonal diameter.


Assuntos
Bainha de Mielina/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Remielinização/fisiologia , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Tamanho do Órgão , Receptores Proteína Tirosina Quinases/genética
3.
Brain Struct Funct ; 227(6): 2035-2048, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441271

RESUMO

Myelination within the central nervous system (CNS) is crucial for the conduction of action potentials by neurons. Variation in compact myelin morphology and the structure of the paranode are hypothesised to have significant impact on the speed of action potentials. There are, however, limited experimental data investigating the impact of changes in myelin structure upon conductivity in the central nervous system. We have used a genetic model in which myelin thickness is reduced to investigate the effect of myelin alterations upon action potential velocity. A detailed examination of the myelin ultrastructure of mice in which the receptor tyrosine kinase Tyro3 has been deleted showed that, in addition to thinner myelin, these mice have significantly disrupted paranodes. Despite these alterations to myelin and paranodal structure, we did not identify a reduction in conductivity in either the corpus callosum or the optic nerve. Exploration of these results using a mathematical model of neuronal conductivity predicts that the absence of Tyro3 would lead to reduced conductivity in single fibres, but would not affect the compound action potential of multiple myelinated neurons as seen in neuronal tracts. Our data highlight the importance of experimental assessment of conductivity and suggests that simple assessment of structural changes to myelin is a poor predictor of neural functional outcomes.


Assuntos
Bainha de Mielina , Substância Branca , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Camundongos , Bainha de Mielina/ultraestrutura , Nervo Óptico/fisiologia
4.
Front Neurosci ; 14: 840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922258

RESUMO

Retinal ganglion cells (RGCs) are the only output neurons of the vertebrate retina, integrating signals from other retinal neurons and transmitting information to the visual centers of the brain. The death of RGCs is a common outcome in many optic neuropathies, such as glaucoma, demyelinating optic neuritis and ischemic optic neuropathy, resulting in visual defects and blindness. There are currently no therapies in clinical use which can prevent RGC death in optic neuropathies; therefore, the identification of new targets for supporting RGC survival is crucial in the development of novel treatments for eye diseases. In this study we identify that the receptor tyrosine kinase, Tyro3, is critical for normal neuronal function in the adult mouse retina. The loss of Tyro3 results in a reduction in photoreceptor and RGC function as measured using electroretinography. The reduction in RGC function was associated with a thinner retinal nerve fiber layer and fewer RGCs. In the central retina, independent of the loss of RGCs, Tyro3 deficiency resulted in a dramatic reduction in the number of RGC dendrites in the inner plexiform layer. Our results show that Tyro3 has a novel, previously unidentified role in retinal function, RGC survival and RGC morphology. The Tyro3 pathway could therefore provide an alternative, targetable pathway for RGC protective therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA