RESUMO
The widely held assumption that any important scientific information would be available in English underlies the underuse of non-English-language science across disciplines. However, non-English-language science is expected to bring unique and valuable scientific information, especially in disciplines where the evidence is patchy, and for emergent issues where synthesising available evidence is an urgent challenge. Yet such contribution of non-English-language science to scientific communities and the application of science is rarely quantified. Here, we show that non-English-language studies provide crucial evidence for informing global biodiversity conservation. By screening 419,679 peer-reviewed papers in 16 languages, we identified 1,234 non-English-language studies providing evidence on the effectiveness of biodiversity conservation interventions, compared to 4,412 English-language studies identified with the same criteria. Relevant non-English-language studies are being published at an increasing rate in 6 out of the 12 languages where there were a sufficient number of relevant studies. Incorporating non-English-language studies can expand the geographical coverage (i.e., the number of 2° × 2° grid cells with relevant studies) of English-language evidence by 12% to 25%, especially in biodiverse regions, and taxonomic coverage (i.e., the number of species covered by the relevant studies) by 5% to 32%, although they do tend to be based on less robust study designs. Our results show that synthesising non-English-language studies is key to overcoming the widespread lack of local, context-dependent evidence and facilitating evidence-based conservation globally. We urge wider disciplines to rigorously reassess the untapped potential of non-English-language science in informing decisions to address other global challenges. Please see the Supporting information files for Alternative Language Abstracts.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Idioma , Ciência , Animais , Geografia , PublicaçõesRESUMO
Climate change is a major threat to species worldwide, yet it remains uncertain whether tropical or temperate species are more vulnerable to changing temperatures. To further our understanding of this, we used a standardised field protocol to (1) study the buffering ability (ability to regulate body temperature relative to surrounding air temperature) of neotropical (Panama) and temperate (the United Kingdom, Czech Republic and Austria) butterflies at the assemblage and family level, (2) determine if any differences in buffering ability were driven by morphological characteristics and (3) used ecologically relevant temperature measurements to investigate how butterflies use microclimates and behaviour to thermoregulate. We hypothesised that temperate butterflies would be better at buffering than neotropical butterflies as temperate species naturally experience a wider range of temperatures than their tropical counterparts. Contrary to our hypothesis, at the assemblage level, neotropical species (especially Nymphalidae) were better at buffering than temperate species, driven primarily by neotropical individuals cooling themselves more at higher air temperatures. Morphology was the main driver of differences in buffering ability between neotropical and temperate species as opposed to the thermal environment butterflies experienced. Temperate butterflies used postural thermoregulation to raise their body temperature more than neotropical butterflies, probably as an adaptation to temperate climates, but the selection of microclimates did not differ between regions. Our findings demonstrate that butterfly species have unique thermoregulatory strategies driven by behaviour and morphology, and that neotropical species are not likely to be more inherently vulnerable to warming than temperate species.
El calentamiento global es una gran amenaza para las especies alrededor del mundo, sin embargo, no se tiene bien definido sí en los insectos, las especies distribuídas en las zonas tropicales son más vulnerables a los cambios de temperature que las especies de zonas templadas o viceversa. Para responder a este interrogante, utilizamos un protocolo de campo estandarizado aplicado a especies de mariposas distribuídas en zonas tropicales (Panamá) versus zonas templadas (Reino Unido, República Checa y Austria), con el cual buscamos: (1) Evaluar la capacidad de amortiguación (capacidad de regular la temperatura corporal en relación con la temperatura del aire circundante) en el a nivel de ensamblaje y familia, (2) Determinar sí las diferencias en la capacidad de amortiguación es facilitada por sus características morfológicas, y (3) Investigar cómo las mariposas usan los microclimas y el comportamiento para termorregularse a tráves de mediciones de temperatura ecológicamente relevantes. Nuestra hipotesis incial soportaba que las mariposas templadas estaban adaptadas para amortiguar los cambios de temperatura en comparación con las mariposas neotropicales, ya que las especies templadas experimentan un rango más amplio de temperaturas que sus contrapartes tropicales. Contrariamente a nuestra hipótesis, a nivel de ensamble, las especies neotropicales (especialmente familia Nymphalidae) fueron mejores en la capaicidad de amortiguacion que las especies templadas, explicado por el hecho de que individuos se enfrían más a altas temperaturas del aire. Así, la morfología fué el principal impulsor de las diferencias en la capacidad de amortiguación entre las especies neotropicales y templadas en comparación con el ambiente térmico experimentado por las mismas. Encontramos que las mariposas templadas utilizaron la termorregulación de postura para elevar su temperatura corporal más que las mariposas neotropicales, probablemente como una adaptación a los climas templados, aunque la selección de microclimas no difirió entre regiones. Nuestros hallazgos demuestran que las especies de mariposas tienen estrategias de termorregulación únicas, impulsadas principalmente por el comportamiento y morfología, además nuestros resultados demuestran que a diferencia de lo que se ha pensado, las especies neotropicales son igual de vulnerables al calentamiento de su hábitat que las especies templadas.
Assuntos
Borboletas , Humanos , Animais , Borboletas/fisiologia , Regulação da Temperatura Corporal , Temperatura Alta , Temperatura , Temperatura BaixaRESUMO
Climate change poses a severe threat to many taxa, with increased mean temperatures and frequency of extreme weather events predicted. Insects can respond to high temperatures using behaviour, such as angling their wings away from the sun or seeking cool local microclimates to thermoregulate or through physiological tolerance. In a butterfly community in Panama, we compared the ability of adult butterflies from 54 species to control their body temperature across a range of air temperatures (thermal buffering ability), as well as assessing the critical thermal maxima for a subset of 24 species. Thermal buffering ability and tolerance were influenced by family, wing length, and wing colour, with Pieridae, and butterflies that are large or darker in colour having the strongest thermal buffering ability, but Hesperiidae, small, and darker butterflies tolerating the highest temperatures. We identified an interaction between thermal buffering ability and physiological tolerance, where species with stronger thermal buffering abilities had lower thermal tolerance, and vice versa. This interaction implies that species with more stable body temperatures in the field may be more vulnerable to increases in ambient temperatures, for example heat waves associated with ongoing climate change. Our study demonstrates that tropical species employ diverse thermoregulatory strategies, which is also reflected in their sensitivity to temperature extremes.
El cambio climático representa una grave amenaza para muchos taxones, con un aumento de las temperaturas medias y la frecuencia de eventos climáticos extremos pronosticados. Los insectos pueden responder a las altas temperaturas mediante comportamientos, como inclinar sus alas fuera del alcance del sol o buscar microclimas frescos locales para termorregular, o a través de la tolerancia fisiológica. En una comunidad de mariposas en Panamá, comparamos la capacidad de las mariposas adultas de 54 especies para controlar su temperatura corporal en un rango de temperaturas del aire (capacidad de amortiguación térmica), así como evaluar el máximo térmico crítico para un subconjunto de 24 especies. La capacidad de amortiguación térmica y la tolerancia se influenciaron por la familia, la longitud del ala y el colour del ala; con Pieridae y mariposas grandes o de colour más oscuro teniendo la capacidad de amortiguación térmica más fuerte, pero Hesperiidae, mariposas pequeñas y de colour más oscuro tolerando las temperaturas más altas. Identificamos una relación entre la capacidad de amortiguación térmica y la tolerancia fisiológica, en la que las especies con mayores capacidades de amortiguación térmica tenían una menor tolerancia térmica, y viceversa. Esta interacción implica que las especies con temperaturas corporales más estables en el campo pueden ser más vulnerables a los aumentos en las temperaturas ambientales, por ejemplo, las olas de calor asociadas con el cambio climático actual. Nuestra investigación demuestra que las especies tropicales emplean diversas estrategias de termorregulación, las cuales también se reflejan en su sensibilidad a las temperaturas extremas.
Assuntos
Borboletas , Animais , Borboletas/fisiologia , Temperatura , Temperatura Alta , Temperatura Baixa , Regulação da Temperatura Corporal , Mudança ClimáticaRESUMO
Understanding which factors influence the ability of individuals to respond to changing temperatures is fundamental to species conservation under climate change. We investigated how a community of butterflies responded to fine-scale changes in air temperature, and whether species-specific responses were predicted by ecological or morphological traits. Using data collected across a UK reserve network, we investigated the ability of 29 butterfly species to buffer thoracic temperature against changes in air temperature. First, we tested whether differences were attributable to taxonomic family, morphology or habitat association. We then investigated the relative importance of two buffering mechanisms: behavioural thermoregulation versus fine-scale microclimate selection. Finally, we tested whether species' responses to changing temperatures predicted their population trends from a UK-wide dataset. We found significant interspecific variation in buffering ability, which varied between families and increased with wing length. We also found interspecific differences in the relative importance of the two buffering mechanisms, with species relying on microclimate selection suffering larger population declines over the last 40 years than those that could alter their temperature behaviourally. Our results highlight the importance of understanding how different species respond to fine-scale temperature variation, and the value of taking microclimate into account in conservation management to ensure favourable conditions are maintained for temperature-sensitive species.
Assuntos
Borboletas , Animais , Regulação da Temperatura Corporal , Mudança Climática , Temperatura Baixa , Ecossistema , TemperaturaRESUMO
Abstract: Species often associate with specific habitat characteristics, resulting in patchy distributions, whereby they only occupy a proportion of available habitat. Understanding which characteristics species require is a valuable tool for informing conservation management. We investigated the associations of eleven species of day-flying Lepidoptera larvae and their foodplants with habitat characteristics within calcareous grassland reserves in Bedfordshire, UK, across two scales relevant to land managers and target species: the reserve (cardinal aspect, vegetation type) and foodplant patch scale (foodplant height and density). We investigated whether ecological traits (habitat specialism, as defined at a national-scale, and overwintering life stage) influenced the strength of associations. At the reserve scale, we found variation in associations with habitat characteristics across species, with species that overwinter at non-adult life stages having more restricted associations, indicating that they may be more vulnerable to environmental change. Associations were generally stronger with vegetation type than aspect, which can be manipulated more easily by land managers. Seven species had similar associations with habitat characteristics to their foodplants, implying that management to benefit foodplants will also benefit larvae. However, the remaining four species had different associations to their foodplants, and may require alternative management approaches. At the foodplant patch scale, four species were associated with foodplant characteristics, which could be used to inform effective fine-scale management. Implications for insect conservation: Implications for insect conservation: Diverse habitat associations imply that topographic and vegetation variation are valuable for supporting diverse assemblages of butterflies and their foodplants. Supplementary Information: The online version contains supplementary material available at 10.1007/s10841-024-00554-7.
RESUMO
Climate change is set to become one of the leading causes of biodiversity loss worldwide, with extreme weather events projected to increase in frequency. Ectothermic animals such as insects are at particular risk, especially when they are isolated and unable to move through the landscape to track suitable climate. To protect such taxa, it is important to understand how they are impacted by extreme weather events and whether management could provide effective microclimate refuges. However, potential management interventions remain untested for many species. Here, we show that the extreme high temperatures experienced in the UK on 19th July 2022 resulted in a community of butterflies becoming inactive, but that shaded areas, including artificial slopes created as part of conservation management for climate change, provided a refuge during this period. Our results indicate that future high temperatures could force butterflies to shelter in the shade, potentially being unable to fly, feed or mate during these periods, with possible long-term impacts, particularly if multiple consecutive high temperature days are experienced. Supplementary Information: The online version contains supplementary material available at 10.1007/s10841-024-00556-5.
RESUMO
Changes to ambient temperatures under climate change may detrimentally impact small ectotherms that rely on their environment for thermoregulation; however, there is currently a limited understanding of insect larval thermoregulation. As holometabolous insects, Lepidoptera differ in morphology, ecology and behaviour across the life cycle, and so it is likely that adults and larvae differ in their capacity to thermoregulate. In this study, we investigated the thermoregulatory capacity (buffering ability) of 14 species of day-flying Lepidoptera, whether this is influenced by body length or gregariousness, and whether it differs between adult and larval life stages. We also investigated what thermoregulation mechanisms are used: microclimate selection (choosing locations with a particular temperature) or behavioural thermoregulation (controlling temperature through other means, such as basking). We found that Lepidoptera larvae differ in their buffering ability between species and body lengths, but gregariousness did not influence buffering ability. Larvae are worse at buffering themselves against changes in air temperature than adults. Therefore Lepidoptera may be more vulnerable to adverse temperature conditions during their larval life stage. Adults and larvae rely on different thermoregulatory mechanisms; adults primarily use behavioural thermoregulation, whereas larvae use microclimate selection. This implies that larvae are highly dependent on the area around their foodplant for effective thermoregulation. These findings have implications for the management of land and species, for example, highlighting the importance of creating and preserving microclimates and vegetation complexity surrounding Lepidoptera foodplants for larval thermoregulation under future climate change.
RESUMO
ABSTRACT: Climate change affects butterflies in many ways, influencing the timing of emergence and reproduction, habitat preferences, and behaviour. The small blue (Cupido minimus Fuessley, 1775) is highly specialised in its host plant requirements, feeding on the seeds of a single species, kidney vetch (Anthyllis vulneraria), on which the larvae occur singly to avoid cannibalism. The butterfly is likely to be vulnerable to temperature-related changes in oviposition, adult emergence, and host plant flowering times, and is, therefore, a good model species for investigating climate change-related impacts. Using 26 years of data from the national UK Butterfly Monitoring Scheme (1993-2019) from one nature reserve, and 4 years of targeted egg searches (2006, 2007, 2008, 2020) from three reserves in Bedfordshire, UK, we investigated the effects of local temperature on small blue emergence date and total abundance, whether flowerhead or local environmental characteristics predicted small blue oviposition behaviour, and whether this changed between years. Small blue adults emerged on earlier dates over time, and earlier in years with higher maximum February temperatures. Total adult abundance was not predicted by monthly temperatures or total abundance in the previous year. Oviposition behaviour was broadly consistent across years, with egg presence more likely and egg abundance higher on kidney vetch flowerheads that were taller than the surrounding vegetation, and surrounded by taller vegetation and fewer mature flowerheads. The effect of solar radiation differed between years, with a negative effect on the probability of egg presence in 2007 and 2008, but a positive effect in 2020. Egg abundance per flowerhead was highly variable between years, with 2006 having four times more eggs per flowerhead than other years. This was likely driven by high adult abundance in 2006, which could have increased competition for flowerheads. IMPLICATIONS FOR INSECT CONSERVATION: Our results indicate that management for greater availability of taller kidney vetch amongst taller vegetation would encourage small blue oviposition on a greater number of flowerheads, providing a possible means of reducing competition and increasing larval survival, and that this would be effective despite variation in adult abundance between years. The high level of competition we observed in the year with the highest adult abundance indicates that higher numbers of host plants should be encouraged to reduce competition and larval cannibalism in peak years, increasing the likelihood of long-term population persistence and growth. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10841-021-00360-5.
RESUMO
Climate change is having profound effects on the distributions of species globally. Trait-based assessments predict that specialist and range-restricted species are among those most likely to be at risk of extinction from such changes. Understanding individual species' responses to climate change is therefore critical for informing conservation planning. We use an established Species Distribution Modelling (SDM) protocol to describe the curious range-restriction of the globally threatened White-tailed Swallow (Hirundo megaensis) to a small area in southern Ethiopia. We find that, across a range of modelling approaches, the distribution of this species is well described by two climatic variables, maximum temperature and dry season precipitation. These same two variables have been previously found to limit the distribution of the unrelated but closely sympatric Ethiopian Bush-crow (Zavattariornis stresemanni). We project the future climatic suitability for both species under a range of climate scenarios and modelling approaches. Both species are at severe risk of extinction within the next half century, as the climate in 68-84% (for the swallow) and 90-100% (for the bush-crow) of their current ranges is predicted to become unsuitable. Intensive conservation measures, such as assisted migration and captive-breeding, may be the only options available to safeguard these two species. Their projected disappearance in the wild offers an opportunity to test the reliability of SDMs for predicting the fate of wild species. Monitoring future changes in the distribution and abundance of the bush-crow is particularly tractable because its nests are conspicuous and visible over large distances.
Assuntos
Mudança Climática , Corvos/fisiologia , Espécies em Perigo de Extinção/tendências , Andorinhas/fisiologia , Distribuição Animal , Animais , Ecossistema , Etiópia , Modelos EstatísticosRESUMO
Evidence-based decision-making is most effective with comprehensive access to scientific studies. If studies face significant publication delays or barriers, the useful information they contain may not reach decision-makers in a timely manner. This represents a potential problem for mission-oriented disciplines where access to the latest data is required to ensure effective actions are undertaken. We sought to analyse the severity of publication delay in conservation science-a field that requires urgent action to prevent the loss of biodiversity. We used the Conservation Evidence database to assess the length of publication delay (time from finishing data collection to publication) in the literature that tests the effectiveness of conservation interventions. From 7,447 peer-reviewed and non-peer-reviewed studies of conservation interventions published over eleven decades, we find that the raw mean publication delay was 3.2 years (±2SD = 0.1) and varied by conservation subject. A significantly shorter delay was observed for studies focused on Bee Conservation, Sustainable Aquaculture, Management of Captive Animals, Amphibian Conservation, and Control of Freshwater Invasive Species (Estimated Marginal Mean range from 1.4-1.9 years). Publication delay was significantly shorter for the non-peer-reviewed literature (Estimated Marginal Mean delay of 1.9 years ± 0.2) compared to the peer-reviewed literature (i.e., scientific journals; Estimated Marginal Mean delay of 3.0 years ± 0.1). We found publication delay has significantly increased over time (an increase of ~1.2 years from 1912 (1.4 years ± 0.2) to 2020 (2.6 years ± 0.1)), but this change was much weaker and non-significant post-2000s; we found no evidence for any decline. There was also no evidence that studies on more threatened species were subject to a shorter delay-indeed, the contrary was true for mammals, and to a lesser extent for birds. We suggest a range of possible ways in which scientists, funders, publishers, and practitioners can work together to reduce delays at each stage of the publication process.
RESUMO
The crisis generated by the emergence and pandemic spread of COVID-19 has thrown into the global spotlight the dangers associated with novel diseases, as well as the key role of animals, especially wild animals, as potential sources of pathogens to humans. There is a widespread demand for a new relationship with wild and domestic animals, including suggested bans on hunting, wildlife trade, wet markets or consumption of wild animals. However, such policies risk ignoring essential elements of the problem as well as alienating and increasing hardship for local communities across the world, and might be unachievable at scale. There is thus a need for a more complex package of policy and practical responses. We undertook a solution scan to identify and collate 161 possible options for reducing the risks of further epidemic disease transmission from animals to humans, including potential further SARS-CoV-2 transmission (original or variants). We include all categories of animals in our responses (i.e. wildlife, captive, unmanaged/feral and domestic livestock and pets) and focus on pathogens (especially viruses) that, once transmitted from animals to humans, could acquire epidemic potential through high rates of human-to-human transmission. This excludes measures to prevent well-known zoonotic diseases, such as rabies, that cannot readily transmit between humans. We focused solutions on societal measures, excluding the development of vaccines and other preventive therapeutic medicine and veterinary medicine options that are discussed elsewhere. We derived our solutions through reading the scientific literature, NGO position papers, and industry guidelines, collating our own experiences, and consulting experts in different fields. Herein, we review the major zoonotic transmission pathways and present an extensive list of options. The potential solutions are organised according to the key stages of the trade chain and encompass solutions that can be applied at the local, regional and international scales. This is a set of options targeted at practitioners and policy makers to encourage careful examination of possible courses of action, validating their impact and documenting outcomes.
Assuntos
COVID-19 , Animais , Animais Selvagens , Humanos , Pandemias , SARS-CoV-2 , Zoonoses/epidemiologiaRESUMO
Societal biosecurity - measures built into everyday society to minimize risks from pests and diseases - is an important aspect of managing epidemics and pandemics. We aimed to identify societal options for reducing the transmission and spread of respiratory viruses. We used SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as a case study to meet the immediate need to manage the COVID-19 pandemic and eventually transition to more normal societal conditions, and to catalog options for managing similar pandemics in the future. We used a 'solution scanning' approach. We read the literature; consulted psychology, public health, medical, and solution scanning experts; crowd-sourced options using social media; and collated comments on a preprint. Here, we present a list of 519 possible measures to reduce SARS-CoV-2 transmission and spread. We provide a long list of options for policymakers and businesses to consider when designing biosecurity plans to combat SARS-CoV-2 and similar pathogens in the future. We also developed an online application to help with this process. We encourage testing of actions, documentation of outcomes, revisions to the current list, and the addition of further options.
RESUMO
A recent paper claiming evidence of global insect declines achieved huge media attention, including claims of "insectaggedon" and a "collapse of nature." Here, we argue that while many insects are declining in many places around the world, the study has important limitations that should be highlighted. We emphasise the robust evidence of large and rapid insect declines present in the literature, while also highlighting the limitations of the original study.