RESUMO
In bacteria, transcription and translation take place in the same cellular compartment. Therefore, a messenger RNA can be translated as it is being transcribed, a process known as transcription-translation coupling. This process was already recognized at the dawn of molecular biology, yet the interplay between the two key players, the RNA polymerase and ribosome, remains elusive. Genetic data indicate that an RNA sequence can be translated shortly after it has been transcribed. The closer both processes are in time, the less accessible the RNA sequence is between the RNA polymerase and ribosome. This temporal coupling has important consequences for gene regulation. Biochemical and structural studies have detailed several complexes between the RNA polymerase and ribosome. The in vivo relevance of this physical coupling has not been formally demonstrated. We discuss how both temporal and physical coupling may mesh to produce the phenomenon we know as transcription-translation coupling.
Assuntos
Bactérias , Ribossomos , Bactérias/genética , Ribossomos/genética , RNA Mensageiro/genéticaRESUMO
Two types of glycyl-tRNA synthetase (GlyRS) are known, the α2 and the α2ß2 GlyRSs. Both types of synthetase employ a class II catalytic domain to aminoacylate tRNAGly. In plastids and some bacteria, the α and ß subunits are fused and are designated as (αß)2 GlyRSs. While the tRNA recognition and aminoacylation mechanisms are well understood for α2 GlyRSs, little is known about the mechanisms for α2ß2/(αß)2 GlyRSs. Here we describe structures of the (αß)2 GlyRS from Oryza sativa chloroplast by itself and in complex with cognate tRNAGly. The set of structures reveals that the U-shaped ß half of the synthetase selects the tRNA in a two-step manner. In the first step, the synthetase engages the elbow and the anticodon base C35 of the tRNA. In the second step, the tRNA has rotated â¼9° toward the catalytic centre. The synthetase probes the tRNA for the presence of anticodon base C36 and discriminator base C73. This intricate mechanism enables the tRNA to access the active site of the synthetase from a direction opposite to that of most other class II synthetases.
Assuntos
Glicina-tRNA Ligase , Glicina-tRNA Ligase/genética , Anticódon , RNA de Transferência de Glicina/química , RNA de Transferência , PlastídeosRESUMO
Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-natural amino acid into the polypeptide chain. While this strategy is being considered for genome expansion in biotechnology and bioengineering endeavors, a major limitation is a lack of understanding of where the shift occurs in an elongation cycle of protein synthesis. Here, we use the high-efficiency +1-frameshifting SufB2 tRNA, containing an extra nucleotide in the anticodon loop, to address this question. Physical and kinetic measurements of the ribosome reading frame of SufB2 identify twice exploration of +1 frameshifting in one elongation cycle, with the major fraction making the shift during translocation from the aminoacyl-tRNA binding (A) site to the peptidyl-tRNA binding (P) site and the remaining fraction making the shift within the P site upon occupancy of the A site in the +1-frame. We demonstrate that the twice exploration of +1 frameshifting occurs during active protein synthesis and that each exploration is consistent with ribosomal conformational dynamics that permits changes of the reading frame. This work indicates that the ribosome itself is a determinant of changes of the reading frame and reveals a mechanistic parallel of +1 frameshifting with -1 frameshifting.
Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Elongação Traducional da Cadeia Peptídica/genética , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência/genética , Ribossomos/metabolismo , Anticódon/genética , Sítios de Ligação/genética , Proteínas de Transporte/genética , Códon/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , RNA Mensageiro/genética , Fases de Leitura/genéticaRESUMO
Replication of the â¼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.
Assuntos
COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Cromatografia em Gel , RNA-Polimerase RNA-Dependente de Coronavírus/biossíntese , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Complexos Multiproteicos , Mutagênese , Mutação , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Replicação ViralRESUMO
Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNHâ¢, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH-, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.
Assuntos
Proteínas de Bactérias/química , Cupriavidus necator/enzimologia , Formiato Desidrogenases/química , Proteínas Ferro-Enxofre/química , Complexos Multienzimáticos/química , Domínio Catalítico , Cristalografia por Raios X , Mononucleotídeo de Flavina/química , Cinética , NAD/químicaRESUMO
The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.
Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética , Transdução de Sinais/genética , Treonina/genética , Transcrição Gênica/genéticaRESUMO
In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation.
Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas , Subunidades Ribossômicas/metabolismo , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genéticaRESUMO
The coupling of transcription and translation is more than mere translation of an mRNA that is still being transcribed. The discovery of physical interactions between RNA polymerase and ribosomes has spurred renewed interest into this long-standing paradigm of bacterial molecular biology. Here, we provide a concise presentation of recent insights gained from super-resolution microscopy, biochemical, and structural work, including cryo-EM studies. Based on the presented data, we put forward a dynamic model for the interaction between RNA polymerase and ribosomes, in which the interactions are repeatedly formed and broken. Furthermore, we propose that long intervening nascent RNA will loop out and away during the forming the interactions between the RNA polymerase and ribosomes. By comparing the effect of the direct interactions between RNA polymerase and ribosomes with those that transcription factors NusG and RfaH mediate, we submit that two distinct modes of coupling exist: Factor-free and factor-mediated coupling. Finally, we provide a possible framework for transcription-translation coupling and elude to some open questions in the field.
Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , Transcrição GênicaRESUMO
The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3', 5'-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes to small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. This molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.
Assuntos
Apoproteínas/química , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/química , GTP Fosfo-Hidrolases/química , Guanosina Difosfato/química , Fosfoproteínas/química , Pirofosfatases/química , Apoproteínas/genética , Apoproteínas/metabolismo , Cristalografia por Raios X , Escherichia coli Enteropatogênica/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica , Guanosina Difosfato/metabolismo , Cinética , Modelos Moleculares , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pirofosfatases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/metabolismo , Transdução de Sinais , Estresse Fisiológico , Termodinâmica , VirulênciaRESUMO
All evidence to date indicates that at T = 100â K all protein crystals exhibit comparable sensitivity to X-ray damage when quantified using global metrics such as change in scaling B factor or integrated intensity versus dose. This is consistent with observations in cryo-electron microscopy, and results because nearly all diffusive motions of protein and solvent, including motions induced by radiation damage, are frozen out. But how do the sensitivities of different proteins compare at room temperature, where radiation-induced radicals are free to diffuse and protein and lattice structures are free to relax in response to local damage? It might be expected that a large complex with extensive conformational degrees of freedom would be more radiation sensitive than a small, compact globular protein. As a test case, the radiation sensitivity of 70S ribosome crystals has been examined. At T = 100 and 300â K, the half doses are 64â MGy (at 3â Å resolution) and 150â kGy (at 5â Å resolution), respectively. The maximum tolerable dose in a crystallography experiment depends upon the initial or desired resolution. When differences in initial data-set resolution are accounted for, the former half dose is roughly consistent with that for model proteins, and the 100/300â K half-dose ratio is roughly a factor of ten larger. 70S ribosome crystals exhibit substantially increased resolution at 100â K relative to 300â K owing to cooling-induced ordering and not to reduced radiation sensitivity and slower radiation damage.
Assuntos
Ribossomos/efeitos da radiação , Thermus thermophilus/efeitos da radiação , Cristalização , Cristalografia por Raios X , Tolerância a Radiação , Temperatura , Raios XRESUMO
Ubiquitination is a posttranslational modification that regulates protein degradation and signaling in eukaryotes. Although it is acknowledged that pathogens exploit ubiquitination to infect mammalian cells, it remains unknown how microbes interact with the ubiquitination machinery in medically relevant arthropods. Here, we show that the ubiquitination machinery is present in the tick Ixodes scapularis and demonstrate that the E3 ubiquitin ligase named x-linked inhibitor of apoptosis protein (XIAP) restricts bacterial colonization of this arthropod vector. We provide evidence that xiap silencing significantly increases tick colonization by the bacterium Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis. We also demonstrate that (i) XIAP polyubiquitination is dependent on the really interesting new gene (RING) catalytic domain, (ii) XIAP polyubiquitination occurs via lysine (K)-63 but not K-48 residues, and (iii) XIAP-dependent K-63 polyubiquitination requires zinc for catalysis. Taken together, our data define a role for ubiquitination during bacterial colonization of disease vectors.
Assuntos
Anaplasma phagocytophilum/fisiologia , Vetores Aracnídeos/enzimologia , Ehrlichiose/microbiologia , Ixodes/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Vetores Aracnídeos/microbiologia , Domínio Catalítico , Humanos , Ixodes/microbiologia , Interferência de RNA , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genéticaRESUMO
Structures recently have been reported of molecular assemblies that mediate transcription-translation coupling in Escherichia coli . In these molecular assemblies, termed "coupled transcription-translation complexes" or "TTC-B", RNA polymerase (RNAP) interacts directly with the ribosome, the transcription elongation factor NusG or its paralog RfaH forms a bridge between RNAP and ribosome, and the transcription elongation factor NusA optionally forms a second bridge between RNAP and ribosome. Here, we have determined structures of coupled transcription-translation complexes having mRNA spacers between RNAP and ribosome longer than the maximum-length mRNA spacer compatible with formation of TTC-B. The results define a new class of coupled transcription-translation complex, termed "TTC-LC," where "LC" denotes "long-range coupling." TTC-LC differs from TTC-B by a â¼60° rotation and â¼70 Å translation of RNAP relative to ribosome, resulting in loss of direct interactions between RNAP and ribosome and creation of a â¼70 Å gap between RNAP and ribosome. TTC-LC accommodates long mRNA spacers by looping out mRNA from the gap between RNAP and ribosome. We propose that TTC-LC is an intermediate in assembling and disassembling TTC-B, mediating pre-TTC-B transcription-translation coupling before a ribosome catches up to RNAP, and mediating post-TTC-B transcription-translation coupling after a ribosome stops moving and RNAP continues moving.
RESUMO
The NusG paralog RfaH mediates bacterial transcription-translation coupling in genes that contain a DNA sequence element, termed an ops site, required for pausing RNA polymerase (RNAP) and for loading RfaH onto the paused RNAP. Here, we report cryo-electron microscopy structures of transcription-translation complexes (TTCs) containing Escherichia coli RfaH. The results show that RfaH bridges RNAP and the ribosome, with the RfaH N-terminal domain interacting with RNAP and the RfaH C-terminal domain interacting with the ribosome. The results show that the distribution of translational and orientational positions of RNAP relative to the ribosome in RfaH-coupled TTCs is more restricted than in NusG-coupled TTCs because of the more restricted flexibility of the RfaH interdomain linker. The results further suggest that the structural organization of RfaH-coupled TTCs in the 'loading state', in which RNAP and RfaH are located at the ops site during formation of the TTC, is the same as the structural organization of RfaH-coupled TTCs in the 'loaded state', in which RNAP and RfaH are located at positions downstream of the ops site during function of the TTC. The results define the structural organization of RfaH-containing TTCs and set the stage for analysis of functions of RfaH during translation initiation and transcription-translation coupling.
RESUMO
How eukaryotic ribosomes traverse messenger RNA (mRNA) leader sequences to search for protein-synthesis start sites remains one of the most mysterious aspects of translation and its regulation. While the search process is conventionally described by a linear "scanning" model, its exquisitely dynamic nature has restricted detailed mechanistic study. Here, we observed single Saccharomyces cerevisiae ribosomal scanning complexes in real time, finding that they scan diverse mRNA leaders at a rate of 10 to 20 nt s-1. We show that specific binding of a protein to its mRNA leader sequence substantially arrests scanning. Conversely, impairing scanning-complex guanosine 5'-triphosphate hydrolysis results in native start-site bypass. Our results illustrate an mRNA-centric, kinetically controlled regulatory model where the ribosomal pre-initiation complex amplifies a nuanced energetic landscape to regulate scanning and start-site selection fidelity.
Assuntos
RNA Mensageiro , Ribossomos , Saccharomyces cerevisiae , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imagem Individual de Molécula/métodos , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Guanosina Trifosfato/metabolismoRESUMO
The increasing prevalence of antibiotic-resistant pathogens reinforces the need for structures of antibiotic-ribosome complexes that are accurate enough to enable the rational design of novel ribosome-targeting therapeutics. Structures of many antibiotics in complex with both archaeal and eubacterial ribosomes have been determined, yet discrepancies between several of these models have raised the question of whether these differences arise from species-specific variations or from experimental problems. Our structure of chloramphenicol in complex with the 70S ribosome from Thermus thermophilus suggests a model for chloramphenicol bound to the large subunit of the bacterial ribosome that is radically different from the prevailing model. Further, our structures of the macrolide antibiotics erythromycin and azithromycin in complex with a bacterial ribosome are indistinguishable from those determined of complexes with the 50S subunit of Haloarcula marismortui, but differ significantly from the models that have been published for 50S subunit complexes of the eubacterium Deinococcus radiodurans. Our structure of the antibiotic telithromycin bound to the T. thermophilus ribosome reveals a lactone ring with a conformation similar to that observed in the H. marismortui and D. radiodurans complexes. However, the alkyl-aryl moiety is oriented differently in all three organisms, and the contacts observed with the T. thermophilus ribosome are consistent with biochemical studies performed on the Escherichia coli ribosome. Thus, our results support a mode of macrolide binding that is largely conserved across species, suggesting that the quality and interpretation of electron density, rather than species specificity, may be responsible for many of the discrepancies between the models.
Assuntos
Antibacterianos , Ribossomos , Thermus thermophilus/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Azitromicina/química , Azitromicina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cloranfenicol/química , Cloranfenicol/metabolismo , Deinococcus/química , Deinococcus/genética , Deinococcus/metabolismo , Eritromicina/química , Eritromicina/metabolismo , Haloarcula marismortui/química , Haloarcula marismortui/genética , Haloarcula marismortui/metabolismo , Cetolídeos/química , Cetolídeos/metabolismo , Estrutura Molecular , Ribossomos/química , Ribossomos/metabolismo , Thermus thermophilus/química , Thermus thermophilus/genéticaRESUMO
The NusG paralog RfaH mediates bacterial transcription-translation coupling on genes that contain a DNA sequence element, termed an ops site, required for pausing RNA polymerase (RNAP) and for loading RfaH onto the paused RNAP. Here we report cryo-EM structures of transcription-translation complexes (TTCs) containing RfaH. The results show that RfaH bridges RNAP and the ribosome, with the RfaH N-terminal domain interacting with RNAP, and with the RfaH C-terminal domain interacting with the ribosome. The results show that the distribution of translational and orientational positions of RNAP relative to the ribosome in RfaH-coupled TTCs is more restricted than in NusG-coupled TTCs, due to the more restricted flexibility of the RfaH interdomain linker. The results further show that the structural organization of RfaH-coupled TTCs in the "loading state," in which RNAP and RfaH are located at the ops site during formation of the TTC, is the same as the structural organization of RfaH-coupled TTCs in the "loaded state," in which RNAP and RfaH are located at positions downstream of the ops site during function of the TTC. The results define the structural organization of RfaH-containing TTCs and set the stage for analysis of functions of RfaH during translation initiation and transcription-translation coupling. One sentence summary: Cryo-EM reveals the structural basis of transcription-translation coupling by RfaH.
RESUMO
The three most important commercial bacterial insecticides are all derived from subspecies of Bacillus thuringiensis (Bt). Specifically, Bt subsp. kurstaki (Btk) and Bt subsp. aizawai (Bta) are used to control larval lepidopteran pests. The third, Bt subsp. israelensis (Bti), is primarily used to control mosquito and blackfly larvae. All three subspecies produce a parasporal body (PB) during sporulation. The PB is composed of insecticidal proteins that damage the midgut epithelium, initiating a complex process that results in the death of the insect. Among these three subspecies of Bt, Bti is unique as it produces the most complex PB consisting of three compartments. Each compartment is bound by a multilaminar fibrous matrix (MFM). Two compartments contain one protein each, Cry11Aa1 and Cyt1Aa1, while the third contains two, Cry4Aa1/Cry4Ba1. Each compartment is packaged independently before coalescing into the mature spherical PB held together by additional layers of the MFM. This distinctive packaging process is unparalleled among known bacterial organelles, although the underlying molecular biology is yet to be determined. Here, we present structural and molecular evidence that the MFM has a hexagonal pattern to which Bti proteins Bt152 and Bt075 bind. Bt152 binds to a defined spot on the MFM during the development of each compartment, yet its function remains unknown. Bt075 appears to be derived from a bacteriophage major capsid protein (MCP), and though its sequence has markedly diverged, it shares striking 3-D structural similarity to the Escherichia coli phage HK97 Head 1 capsid protein. Both proteins are encoded on Bti's pBtoxis plasmid. Additionally, we have also identified a six-amino acid motif that appears to be part of a novel molecular process responsible for targeting the Cry and Cyt proteins to their cytoplasmic compartments. This paper describes several previously unknown features of the Bti organelle, representing a first step to understanding the biology of a unique process of sorting and packaging of proteins into PBs. The insights from this research suggest a potential for future applications in nanotechnology.
RESUMO
We have captured a preinsertion ternary complex of RB69 DNA polymerase (RB69pol) containing the 3' hydroxyl group at the terminus of an extendable primer (ptO3') and a nonhydrolyzable 2'-deoxyuridine 5'-α,ß-substituted triphosphate, dUpXpp, where X is either NH or CH(2), opposite a complementary templating dA nucleotide residue. Here we report four structures of these complexes formed by three different RB69pol variants with catalytically inert Ca(2+) and four other structures with catalytically competent Mn(2+) or Mg(2+). These structures provide new insights into why the complete divalent metal-ion coordination complexes at the A and B sites are required for nucleotidyl transfer. They show that the metal ion in the A site brings ptO3' close to the α-phosphorus atom (Pα) of the incoming dNTP to enable phosphodiester bond formation through simultaneous coordination of both ptO3' and the nonbridging Sp oxygen of the dNTP's α-phosphate. The coordination bond length of metal ion A as well as its ionic radius determines how close ptO3' can approach Pα. These variables are expected to affect the rate of bond formation. The metal ion in the B site brings the pyrophosphate product close enough to Pα to enable pyrophosphorolysis and assist in the departure of the pyrophosphate. In these dUpXpp-containing complexes, ptO3' occupies the vertex of a distorted metal ion A coordination octahedron. When ptO3' is placed at the vertex of an undistorted, idealized metal ion A octahedron, it is within bond formation distance to Pα. This geometric relationship appears to be conserved among DNA polymerases of known structure.
Assuntos
Cálcio/química , DNA Polimerase Dirigida por DNA/química , Magnésio/química , Manganês/química , Fósforo/química , Proteínas Virais/química , Substituição de Aminoácidos/genética , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/classificação , DNA Polimerase Dirigida por DNA/genética , Difosfatos/química , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Proteínas Virais/classificação , Proteínas Virais/genéticaRESUMO
Bacteriophage RB69 DNA polymerase (RB69 pol) has served as a model for investigating how B family polymerases achieve a high level of fidelity during DNA replication. We report here the structure of an RB69 pol ternary complex at 1.8 Å resolution, extending the resolution from our previously reported structure at 2.6 Å [Franklin, M. C., et al. (2001) Cell 105, 657-667]. In the structure presented here, a network of five highly ordered, buried water molecules can be seen to interact with the N3 and O2 atoms in the minor groove of the DNA duplex. This structure reveals how the formation of the closed ternary complex eliminates two ordered water molecules, which are responsible for a kink in helix P in the apo structure. In addition, three pairs of polar-nonpolar interactions have been observed between (i) the Cα hydrogen of G568 and the N3 atom of the dG templating base, (ii) the O5' and C5 atoms of the incoming dCTP, and (iii) the OH group of S565 and the aromatic face of the dG templating base. These interactions are optimized in the dehydrated environment that envelops Watson-Crick nascent base pairs and serve to enhance base selectivity in wild-type RB69 pol.
Assuntos
Bacteriófago T4/enzimologia , DNA Viral/biossíntese , DNA Polimerase Dirigida por DNA/química , Proteínas Virais/química , Pareamento de Bases , Domínio Catalítico , Replicação do DNA , DNA Viral/química , DNA Polimerase Dirigida por DNA/metabolismo , Ligação de Hidrogênio , Modelos Químicos , Nitrogênio/química , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/metabolismo , Estrutura Secundária de Proteína , Proteínas Virais/metabolismo , Água/químicaRESUMO
LepA is a highly conserved elongation factor that promotes the back translocation of tRNAs on the ribosome during the elongation cycle. We have determined the crystal structure of LepA from Escherichia coli at 2.8-A resolution. The high degree of sequence identity between LepA and EF-G is reflected in the structural similarity between the individual homologous domains of LepA and EF-G. However, the orientation of domains III and V in LepA differs from their orientations in EF-G. LepA also contains a C-terminal domain (CTD) not found in EF-G that has a previously unobserved protein fold. The high structural similarity between LepA and EF-G enabled us to derive a homology model for LepA bound to the ribosome using a 7.3-A cryo-EM structure of a complex between EF-G and the 70S ribosome. In this model, the very electrostatically positive CTD of LepA is placed in the direct vicinity of the A site of the large ribosomal subunit, suggesting a possible interaction between the CTD and the back translocated tRNA or 23S rRNA.