RESUMO
Serotype 2 oral poliovirus vaccine (OPV2) can revert to regain wild-type neurovirulence and spread to cause emergences of vaccine-derived poliovirus (VDPV2). After its global withdrawal from routine immunization in 2016, outbreak response use has created a cycle of VDPV2 emergences that threaten eradication. We implemented a hierarchical model based on VP1 region genetic divergence, time, and location to attribute emergences to campaigns and identify risk factors. We found that a 10 percentage point increase in population immunity in children younger than 5 years at the campaign time and location corresponds to a 18.0% decrease (95% credible interval [CrI], 6.3%-28%) in per-campaign relative risk, and that campaign size is associated with emergence risk (relative risk scaling with population size to a power of 0.80; 95% CrI, .50-1.10). Our results imply how Sabin OPV2 can be used alongside the genetically stable but supply-limited novel OPV2 (listed for emergency use in November 2020) to minimize emergence risk.
Assuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Criança , Humanos , África/epidemiologia , Surtos de Doenças/prevenção & controle , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/efeitos adversos , Fatores de Risco , SorogrupoRESUMO
BACKGROUND: Detection of poliovirus outbreaks relies on a complex laboratory algorithm of cell-culture, polymerase chain reaction (PCR), and sequencing to distinguish wild-type and vaccine-derived polioviruses (VDPV) from Sabin-like strains. We investigated the potential for direct molecular detection and nanopore sequencing (DDNS) to accelerate poliovirus detection. METHODS: We analyzed laboratory data for time required to analyze and sequence serotype-2 VDPV (VDPV2) in stool collected from children with acute flaccid paralysis in Africa (May 2016-February 2020). Impact of delayed detection on VDPV2 outbreak size was assessed through negative binomial regression. RESULTS: VDPV2 confirmation in 525 stools required a median of 49 days from paralysis onset (10th-90th percentile, 29-74), comprising collection and transport (median, 16 days), cell-culture (7 days), intratypic differentiation quantitative reverse transcription PCR (3 days), and sequencing, including shipping if required (15 days). New VDPV2 outbreaks were confirmed a median of 35 days (27-60) after paralysis onset, which we estimate could be reduced to 16 days by DDNS (9-37). Because longer delays in confirmation and response were positively associated with more cases (Pâ <â .001), we estimate that DDNS could reduce the number of VDPV2 cases before a response by 28% (95% credible interval, 12%-42%). CONCLUSIONS: DDNS could accelerate poliovirus outbreak response, reducing their size and the cost of eradication.
Assuntos
Sequenciamento por Nanoporos , Poliomielite , Poliovirus , África , Criança , Surtos de Doenças , Humanos , Paralisia , Vacina Antipólio OralRESUMO
BACKGROUND: Environmental surveillance (ES) for poliovirus is increasingly important for polio eradication, often detecting circulating virus before paralytic cases are reported. The sensitivity of ES depends on appropriate selection of sampling sites, which is difficult in low-income countries with informal sewage networks. METHODS: We measured ES site and sample characteristics in Nigeria during June 2018-May 2019, including sewage physicochemical properties, using a water-quality probe, flow volume, catchment population, and local facilities such as hospitals, schools, and transit hubs. We used mixed-effects logistic regression and machine learning (random forests) to investigate their association with enterovirus isolation (poliovirus and nonpolio enteroviruses) as an indicator of surveillance sensitivity. RESULTS: Four quarterly visits were made to 78 ES sites in 21 states of Nigeria, and ES site characteristic data were matched to 1345 samples with an average enterovirus prevalence among sites of 68% (range, 9%-100%). A larger estimated catchment population, high total dissolved solids, and higher pH were associated with enterovirus detection. A random forests model predicted "good" sites (enterovirus prevalence >70%) from measured site characteristics with out-of-sample sensitivity and specificity of 75%. CONCLUSIONS: Simple measurement of sewage properties and catchment population estimation could improve ES site selection and increase surveillance sensitivity.
Assuntos
Infecções por Enterovirus , Enterovirus , Poliomielite , Poliovirus , Humanos , Esgotos , Nigéria/epidemiologia , Infecções por Enterovirus/epidemiologia , Monitoramento Ambiental , Antígenos ViraisRESUMO
The emergence and international spread of neurovirulent circulating vaccine-derived polioviruses (cVDPVs) across multiple countries in Africa and Asia in recent years pose a major challenge to the goal of eradicating all forms of polioviruses. Approximately 90% of all cVDPV outbreaks are caused by the type 2 strain of the Sabin vaccine, an oral live, attenuated vaccine; cVDPV outbreaks typically occur in areas of persistently low immunization coverage (1). A novel type 2 oral poliovirus vaccine (nOPV2), produced by genetic modification of the type 2 Sabin vaccine virus genome (2), was developed and evaluated through phase I and phase II clinical trials during 2017-2019. nOPV2 was demonstrated to be safe and well-tolerated, have noninferior immunogenicity, and have superior genetic stability compared with Sabin monovalent type 2 (as measured by preservation of the primary attenuation site [domain V in the 5' noncoding region] and significantly lower neurovirulence of fecally shed vaccine virus in transgenic mice) (3-5). These findings indicate that nOPV2 could be an important tool in reducing the risk for generating vaccine-derived polioviruses (VDPVs) and the risk for vaccine-associated paralytic poliomyelitis cases. Based on the favorable preclinical and clinical data, and the public health emergency of international concern generated by ongoing endemic wild poliovirus transmission and cVDPV type 2 outbreaks, the World Health Organization authorized nOPV2 for use under the Emergency Use Listing (EUL) pathway in November 2020, allowing for its first use for outbreak response in March 2021 (6). As required by the EUL process, among other EUL obligations, an extensive plan was developed and deployed for obtaining and monitoring nOPV2 isolates detected during acute flaccid paralysis (AFP) surveillance, environmental surveillance, adverse events after immunization surveillance, and targeted surveillance for adverse events of special interest (i.e., prespecified events that have the potential to be causally associated with the vaccine product), during outbreak response, as well as through planned field studies. Under this monitoring framework, data generated from whole-genome sequencing of nOPV2 isolates, alongside other virologic data for isolates from AFP and environmental surveillance systems, are reviewed by the genetic characterization subgroup of an nOPV working group of the Global Polio Eradication Initiative. Global nOPV2 genomic surveillance during March-October 2021 confirmed genetic stability of the primary attenuating site. Sequence data generated through this unprecedented global effort confirm the genetic stability of nOPV2 relative to Sabin 2 and suggest that nOPV2 will be an important tool in the eradication of poliomyelitis. nOPV2 surveillance should continue for the duration of the EUL.
Assuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Animais , Viroses do Sistema Nervoso Central/prevenção & controle , Surtos de Doenças/prevenção & controle , Humanos , Camundongos , Mielite/prevenção & controle , Doenças Neuromusculares/prevenção & controle , Poliomielite/epidemiologia , Poliomielite/etiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/efeitos adversos , Vacina Antipólio Oral/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genéticaRESUMO
BACKGROUND: Mass campaigns with oral poliovirus vaccine (OPV) have brought the world close to the eradication of wild poliovirus. However, to complete eradication, OPV must itself be withdrawn to prevent outbreaks of vaccine-derived poliovirus (VDPV). Synchronized global withdrawal of OPV began with serotype 2 OPV (OPV2) in April 2016, which presented the first test of the feasibility of eradicating all polioviruses. METHODS: We analyzed global surveillance data on the detection of serotype 2 Sabin vaccine (Sabin-2) poliovirus and serotype 2 vaccine-derived poliovirus (VDPV2, defined as vaccine strains that are at least 0.6% divergent from Sabin-2 poliovirus in the viral protein 1 genomic region) in stool samples from 495,035 children with acute flaccid paralysis in 118 countries and in 8528 sewage samples from four countries at high risk for transmission; the samples were collected from January 1, 2013, through July 11, 2018. We used Bayesian spatiotemporal smoothing and logistic regression to identify and map risk factors for persistent detection of Sabin-2 poliovirus and VDPV2. RESULTS: The prevalence of Sabin-2 poliovirus in stool samples declined from 3.9% (95% confidence interval [CI], 3.5 to 4.3) at the time of OPV2 withdrawal to 0.2% (95% CI, 0.1 to 2.7) at 2 months after withdrawal, and the detection rate in sewage samples declined from 71.0% (95% CI, 61.0 to 80.0) to 13.0% (95% CI, 8.0 to 20.0) during the same period. However, 12 months after OPV2 withdrawal, Sabin-2 poliovirus continued to be detected in stool samples (<0.1%; 95% CI, <0.1 to 0.1) and sewage samples (8.0%; 95% CI, 5.0 to 13.0) because of the use of OPV2 in response to VDPV2 outbreaks. Nine outbreaks were reported after OPV2 withdrawal and were associated with low coverage of routine immunization (odds ratio, 1.64 [95% CI, 1.14 to 2.54] per 10% absolute decrease) and low levels of population immunity (odds ratio, 2.60 [95% CI, 1.35 to 5.59] per 10% absolute decrease) within affected countries. CONCLUSIONS: High population immunity has facilitated the decline in the prevalence of Sabin-2 poliovirus after OPV2 withdrawal and restricted the circulation of VDPV2 to areas known to be at high risk for transmission. The prevention of VDPV2 outbreaks in these known areas before the accumulation of substantial cohorts of children susceptible to type 2 poliovirus remains a high priority. (Funded by the Bill and Melinda Gates Foundation and the World Health Organization.).
Assuntos
Fezes/virologia , Poliomielite/virologia , Vacina Antipólio Oral , Poliovirus/isolamento & purificação , Esgotos/virologia , Adolescente , África , Ásia , Criança , Pré-Escolar , Erradicação de Doenças , Surtos de Doenças/prevenção & controle , Feminino , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Masculino , Poliomielite/prevenção & controle , Poliovirus/classificação , Vacina Antipólio de Vírus Inativado , Vigilância da População , SorogrupoRESUMO
Ebola emerged in West Africa around December 2013 and swept through Guinea, Sierra Leone and Liberia, giving rise to 27,748 confirmed, probable and suspected cases reported by 29 July 2015. Case diagnoses during the epidemic have relied on polymerase chain reaction-based tests. Owing to limited laboratory capacity and local transport infrastructure, the delays from sample collection to test results being available have often been 2 days or more. Point-of-care rapid diagnostic tests offer the potential to substantially reduce these delays. We review Ebola rapid diagnostic tests approved by the World Health Organization and those currently in development. Such rapid diagnostic tests could allow early triaging of patients, thereby reducing the potential for nosocomial transmission. In addition, despite the lower test accuracy, rapid diagnostic test-based diagnosis may be beneficial in some contexts because of the reduced time spent by uninfected individuals in health-care settings where they may be at increased risk of infection; this also frees up hospital beds. We use mathematical modelling to explore the potential benefits of diagnostic testing strategies involving rapid diagnostic tests alone and in combination with polymerase chain reaction testing. Our analysis indicates that the use of rapid diagnostic tests with sensitivity and specificity comparable with those currently under development always enhances control, whether evaluated at a health-care-unit or population level. If such tests had been available throughout the recent epidemic, we estimate, for Sierra Leone, that their use in combination with confirmatory polymerase chain-reaction testing might have reduced the scale of the epidemic by over a third.
Assuntos
Testes Diagnósticos de Rotina , Doença pelo Vírus Ebola , África Ocidental/epidemiologia , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/transmissão , Humanos , Fatores de Tempo , TriagemAssuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Humanos , África/epidemiologia , Anticorpos AntiviraisRESUMO
Reversion and spread of vaccine-derived poliovirus (VDPV) to cause outbreaks of poliomyelitis is a rare outcome resulting from immunisation with the live-attenuated oral poliovirus vaccines (OPVs). Global withdrawal of all three OPV serotypes is therefore a key objective of the polio endgame strategic plan, starting with serotype 2 (OPV2) in April 2016. Supplementary immunisation activities (SIAs) with trivalent OPV (tOPV) in advance of this date could mitigate the risks of OPV2 withdrawal by increasing serotype-2 immunity, but may also create new serotype-2 VDPV (VDPV2). Here, we examine the risk factors for VDPV2 emergence and implications for the strategy of tOPV SIAs prior to OPV2 withdrawal. We first developed mathematical models of VDPV2 emergence and spread. We found that in settings with low routine immunisation coverage, the implementation of a single SIA increases the risk of VDPV2 emergence. If routine coverage is 20%, at least 3 SIAs are needed to bring that risk close to zero, and if SIA coverage is low or there are persistently "missed" groups, the risk remains high despite the implementation of multiple SIAs. We then analysed data from Nigeria on the 29 VDPV2 emergences that occurred during 2004-2014. Districts reporting the first case of poliomyelitis associated with a VDPV2 emergence were compared to districts with no VDPV2 emergence in the same 6-month period using conditional logistic regression. In agreement with the model results, the odds of VDPV2 emergence decreased with higher routine immunisation coverage (odds ratio 0.67 for a 10% absolute increase in coverage [95% confidence interval 0.55-0.82]). We also found that the probability of a VDPV2 emergence resulting in poliomyelitis in >1 child was significantly higher in districts with low serotype-2 population immunity. Our results support a strategy of focused tOPV SIAs before OPV2 withdrawal in areas at risk of VDPV2 emergence and in sufficient number to raise population immunity above the threshold permitting VDPV2 circulation. A failure to implement this risk-based approach could mean these SIAs actually increase the risk of VDPV2 emergence and spread.
Assuntos
Modelos Teóricos , Poliomielite/prevenção & controle , Vacina Antipólio Oral/efeitos adversos , Humanos , Nigéria/epidemiologia , Poliomielite/epidemiologia , Poliomielite/transmissão , Poliovirus/imunologia , Fatores de Risco , Vacinas Atenuadas/efeitos adversosRESUMO
BACKGROUND: Pakistan currently provides a substantial challenge to global polio eradication, having contributed to 73% of reported poliomyelitis in 2015 and 54% in 2016. A better understanding of the risk factors and movement patterns that contribute to poliovirus transmission across Pakistan would support evidence-based planning for mass vaccination campaigns. METHODS AND FINDINGS: We fit mixed-effects logistic regression models to routine surveillance data recording the presence of poliomyelitis associated with wild-type 1 poliovirus in districts of Pakistan over 6-month intervals between 2010 to 2016. To accurately capture the force of infection (FOI) between districts, we compared 6 models of population movement (adjacency, gravity, radiation, radiation based on population density, radiation based on travel times, and mobile-phone based). We used the best-fitting model (based on the Akaike Information Criterion [AIC]) to produce 6-month forecasts of poliomyelitis incidence. The odds of observing poliomyelitis decreased with improved routine or supplementary (campaign) immunisation coverage (multivariable odds ratio [OR] = 0.75, 95% confidence interval [CI] 0.67-0.84; and OR = 0.75, 95% CI 0.66-0.85, respectively, for each 10% increase in coverage) and increased with a higher rate of reporting non-polio acute flaccid paralysis (AFP) (OR = 1.13, 95% CI 1.02-1.26 for a 1-unit increase in non-polio AFP per 100,000 persons aged <15 years). Estimated movement of poliovirus-infected individuals was associated with the incidence of poliomyelitis, with the radiation model of movement providing the best fit to the data. Six-month forecasts of poliomyelitis incidence by district for 2013-2016 showed good predictive ability (area under the curve range: 0.76-0.98). However, although the best-fitting movement model (radiation) was a significant determinant of poliomyelitis incidence, it did not improve the predictive ability of the multivariable model. Overall, in Pakistan the risk of polio cases was predicted to reduce between July-December 2016 and January-June 2017. The accuracy of the model may be limited by the small number of AFP cases in some districts. CONCLUSIONS: Spatiotemporal variation in immunization performance and population movement patterns are important determinants of historical poliomyelitis incidence in Pakistan; however, movement dynamics were less influential in predicting future cases, at a time when the polio map is shrinking. Results from the regression models we present are being used to help plan vaccination campaigns and transit vaccination strategies in Pakistan.
Assuntos
Poliomielite/epidemiologia , Poliovirus/fisiologia , Vigilância da População , Humanos , Imunização , Incidência , Modelos Logísticos , Paquistão/epidemiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Poliovirus/imunologia , Fatores de Risco , Sorogrupo , Análise Espaço-TemporalRESUMO
As polio eradication inches closer, the absence of poliovirus circulation in most of the world and imperfect vaccination coverage are resulting in immunity gaps and polio outbreaks affecting adults. Furthermore, imperfect, waning intestinal immunity among older children and adults permits reinfection and poliovirus shedding, prompting calls to extend the age range of vaccination campaigns even in the absence of cases in these age groups. The success of such a strategy depends on the contribution to poliovirus transmission by older ages, which has not previously been estimated. We fit a mathematical model of poliovirus transmission to time series data from two large outbreaks that affected adults (Tajikistan 2010, Republic of Congo 2010) using maximum-likelihood estimation based on iterated particle-filtering methods. In Tajikistan, the contribution of unvaccinated older children and adults to transmission was minimal despite a significant number of cases in these age groups [reproduction number, R = 0.46 (95% confidence interval, 0.42-0.52) for >5-y-olds compared to 2.18 (2.06-2.45) for 0- to 5-y-olds]. In contrast, in the Republic of Congo, the contribution of older children and adults was significant [R = 1.85 (1.83-4.00)], perhaps reflecting sanitary and socioeconomic variables favoring efficient virus transmission. In neither setting was there evidence for a significant role of imperfect intestinal immunity in the transmission of poliovirus. Bringing the immunization response to the Tajikistan outbreak forward by 2 wk would have prevented an additional 130 cases (21%), highlighting the importance of early outbreak detection and response.
Assuntos
Poliomielite/transmissão , Poliomielite/virologia , Poliovirus/fisiologia , Adolescente , Adulto , Distribuição por Idade , Criança , Pré-Escolar , Congo/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Geografia , Humanos , Lactente , Recém-Nascido , Modelos Biológicos , Poliomielite/epidemiologia , Tadjiquistão/epidemiologiaRESUMO
As the global eradication of poliomyelitis approaches the final stages, prompt detection of new outbreaks is critical to enable a fast and effective outbreak response. Surveillance relies on reporting of acute flaccid paralysis (AFP) cases and laboratory confirmation through isolation of poliovirus from stool. However, delayed sample collection and testing can delay outbreak detection. We investigated whether weekly testing for clusters of AFP by location and time, using the Kulldorff scan statistic, could provide an early warning for outbreaks in 20 countries. A mixed-effects regression model was used to predict background rates of nonpolio AFP at the district level. In Tajikistan and Congo, testing for AFP clusters would have resulted in an outbreak warning 39 and 11 days, respectively, before official confirmation of large outbreaks. This method has relatively high specificity and could be integrated into the current polio information system to support rapid outbreak response activities.
Assuntos
Erradicação de Doenças , Surtos de Doenças/prevenção & controle , Diagnóstico Precoce , Paralisia/diagnóstico , Poliomielite/diagnóstico , Análise por Conglomerados , Congo , Monitoramento Epidemiológico , Humanos , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/etiologia , Paralisia/etiologia , Poliomielite/epidemiologia , Poliomielite/fisiopatologia , Somália , Tadjiquistão , Fatores de TempoRESUMO
BACKGROUND: Global withdrawal of serotype-2 oral poliovirus vaccine (OPV2) took place in April 2016. This marked a milestone in global polio eradication and was a public health intervention of unprecedented scale, affecting 155 countries. Achieving high levels of serotype-2 population immunity before OPV2 withdrawal was critical to avoid subsequent outbreaks of serotype-2 vaccine-derived polioviruses (VDPV2s). METHODS AND FINDINGS: In August 2015, we estimated vaccine-induced population immunity against serotype-2 poliomyelitis for 1 January 2004-30 June 2015 and produced forecasts for April 2016 by district in Nigeria and Pakistan. Population immunity was estimated from the vaccination histories of children <36 mo old identified with non-polio acute flaccid paralysis (AFP) reported through polio surveillance, information on immunisation activities with different oral poliovirus vaccine (OPV) formulations, and serotype-specific estimates of the efficacy of these OPVs against poliomyelitis. District immunity estimates were spatio-temporally smoothed using a Bayesian hierarchical framework. Coverage estimates for immunisation activities were also obtained, allowing for heterogeneity within and among districts. Forward projections of immunity, based on these estimates and planned immunisation activities, were produced through to April 2016 using a cohort model. Estimated population immunity was negatively correlated with the probability of VDPV2 poliomyelitis being reported in a district. In Nigeria and Pakistan, declines in immunity during 2008-2009 and 2012-2013, respectively, were associated with outbreaks of VDPV2. Immunity has since improved in both countries as a result of increased use of trivalent OPV, and projections generally indicated sustained or improved immunity in April 2016, such that the majority of districts (99% [95% uncertainty interval 97%-100%] in Nigeria and 84% [95% uncertainty interval 77%-91%] in Pakistan) had >70% population immunity among children <36 mo old. Districts with lower immunity were clustered in northeastern Nigeria and northwestern Pakistan. The accuracy of immunity estimates was limited by the small numbers of non-polio AFP cases in some districts, which was reflected by large uncertainty intervals. Forecasted improvements in immunity for April 2016 were robust to the uncertainty in estimates of baseline immunity (January-June 2015), vaccine coverage, and vaccine efficacy. CONCLUSIONS: Immunity against serotype-2 poliomyelitis was forecasted to improve in April 2016 compared to the first half of 2015 in Nigeria and Pakistan. These analyses informed the endorsement of OPV2 withdrawal in April 2016 by the WHO Strategic Advisory Group of Experts on Immunization.
Assuntos
Poliomielite/prevenção & controle , Vacina Antipólio Oral/administração & dosagem , Pré-Escolar , Erradicação de Doenças , Revisão de Uso de Medicamentos , Saúde Global , Humanos , Imunidade , Incidência , Lactente , Poliomielite/epidemiologia , Poliovirus/classificação , Poliovirus/imunologia , SorotipagemRESUMO
BACKGROUND: The ongoing West African Ebola epidemic began in December 2013 in Guinea, probably from a single zoonotic introduction. As a result of ineffective initial control efforts, an Ebola outbreak of unprecedented scale emerged. As of 4 May 2015, it had resulted in more than 19,000 probable and confirmed Ebola cases, mainly in Guinea (3,529), Liberia (5,343), and Sierra Leone (10,746). Here, we present analyses of data collected during the outbreak identifying drivers of transmission and highlighting areas where control could be improved. METHODS AND FINDINGS: Over 19,000 confirmed and probable Ebola cases were reported in West Africa by 4 May 2015. Individuals with confirmed or probable Ebola ("cases") were asked if they had exposure to other potential Ebola cases ("potential source contacts") in a funeral or non-funeral context prior to becoming ill. We performed retrospective analyses of a case line-list, collated from national databases of case investigation forms that have been reported to WHO. These analyses were initially performed to assist WHO's response during the epidemic, and have been updated for publication. We analysed data from 3,529 cases in Guinea, 5,343 in Liberia, and 10,746 in Sierra Leone; exposures were reported by 33% of cases. The proportion of cases reporting a funeral exposure decreased over time. We found a positive correlation (r = 0.35, p < 0.001) between this proportion in a given district for a given month and the within-district transmission intensity, quantified by the estimated reproduction number (R). We also found a negative correlation (r = -0.37, p < 0.001) between R and the district proportion of hospitalised cases admitted within ≤4 days of symptom onset. These two proportions were not correlated, suggesting that reduced funeral attendance and faster hospitalisation independently influenced local transmission intensity. We were able to identify 14% of potential source contacts as cases in the case line-list. Linking cases to the contacts who potentially infected them provided information on the transmission network. This revealed a high degree of heterogeneity in inferred transmissions, with only 20% of cases accounting for at least 73% of new infections, a phenomenon often called super-spreading. Multivariable regression models allowed us to identify predictors of being named as a potential source contact. These were similar for funeral and non-funeral contacts: severe symptoms, death, non-hospitalisation, older age, and travelling prior to symptom onset. Non-funeral exposures were strongly peaked around the death of the contact. There was evidence that hospitalisation reduced but did not eliminate onward exposures. We found that Ebola treatment units were better than other health care facilities at preventing exposure from hospitalised and deceased individuals. The principal limitation of our analysis is limited data quality, with cases not being entered into the database, cases not reporting exposures, or data being entered incorrectly (especially dates, and possible misclassifications). CONCLUSIONS: Achieving elimination of Ebola is challenging, partly because of super-spreading. Safe funeral practices and fast hospitalisation contributed to the containment of this Ebola epidemic. Continued real-time data capture, reporting, and analysis are vital to track transmission patterns, inform resource deployment, and thus hasten and maintain elimination of the virus from the human population.
Assuntos
Surtos de Doenças , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/epidemiologia , Guiné/epidemiologia , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Libéria/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Serra Leoa/epidemiologiaRESUMO
BACKGROUND: Both high and low pathogenic subtype A avian influenza remain ongoing threats to the commercial poultry industry globally. The emergence of a novel low pathogenic H7N9 lineage in China presents itself as a new concern to both human and animal health and may necessitate additional surveillance in commercial poultry operations in affected regions. METHODS: Sampling data was simulated using a mechanistic model of H7N9 influenza transmission within commercial poultry barns together with a stochastic observation process. Parameters were estimated using maximum likelihood. We assessed the probability of detecting an outbreak at time of slaughter using both real-time polymerase chain reaction (rt-PCR) and a hemagglutinin inhibition assay (HI assay) before considering more intense sampling prior to slaughter. The day of virus introduction and R0 were estimated jointly from weekly flock sampling data. For scenarios where R0 was known, we estimated the day of virus introduction into a barn under different sampling frequencies. RESULTS: If birds were tested at time of slaughter, there was a higher probability of detecting evidence of an outbreak using an HI assay compared to rt-PCR, except when the virus was introduced <2 weeks before time of slaughter. Prior to the initial detection of infection N sample = 50 (1%) of birds were sampled on a weekly basis once, but after infection was detected, N sample = 2000 birds (40%) were sampled to estimate both parameters. We accurately estimated the day of virus introduction in isolation with weekly and 2-weekly sampling. CONCLUSIONS: A strong sampling effort would be required to infer both the day of virus introduction and R0. Such a sampling effort would not be required to estimate the day of virus introduction alone once R0 was known, and sampling N sample = 50 of birds in the flock on a weekly or 2 weekly basis would be sufficient.
Assuntos
Criação de Animais Domésticos/instrumentação , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Criação de Animais Domésticos/estatística & dados numéricos , Animais , China/epidemiologia , Surtos de Doenças/veterinária , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Modelos Teóricos , Vigilância da População , Aves Domésticas , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de TempoRESUMO
BACKGROUND: Between 2018 and 2022, Nigeria experienced continuous transmission of circulating vaccine-derived type 2 poliovirus (cVDPV2), with 526 cases of cVDPV2 poliomyelitis detected in total and approximately 180 million doses of monovalent type 2 oral poliovirus vaccine (mOPV2) and 450 million doses of novel type 2 oral poliovirus vaccine (nOPV2) delivered in outbreak response campaigns. Inactivated poliovirus vaccine (IPV) was introduced into routine immunisation in 2015, with a second dose added in 2021. We aimed to estimate the effectiveness of nOPV2 against cVDPV2 paralysis and compare nOPV2 effectiveness with that of mOPV2 and IPV. METHODS: In this retrospective case-control study, we used acute flaccid paralysis (AFP) surveillance data in Nigeria from Jan 1, 2017, to Dec 31, 2022, using age-matched, onset-matched, and location-matched cVDPV2-negative AFP cases as test-negative controls. We also did a parallel prospective study from March, 2021, using age-matched community controls from the same settlement as the cases. We included children born after May, 2016, younger than 60 months, for whom polio immunisation history (doses of OPV from campaigns and IPV) was reported. We estimated the per-dose effectiveness of nOPV2 against cVDPV2 paralysis using conditional logistic regression and compared nOPV2 effectiveness with that of mOPV2 and IPV. FINDINGS: In the retrospective case-control study, we identified 509 cVDPV2 poliomyelitis cases in Nigeria with case verification and paralysis onset between Jan 1, 2017, and Dec 31, 2022. Of these, 82 children were excluded for not meeting inclusion criteria, and 363 (85%) of 427 eligible cases were matched to 1303 test-negative controls. Cases reported fewer OPV and IPV doses than test-negative controls (mean number of OPV doses 5·9 [SD 4·2] in cases vs 6·7 [4·3] in controls; one or more IPV doses reported in 95 [26%] of 363 cases vs 513 [39%] of 1303 controls). We found low per-dose effectiveness of nOPV2 (12%, 95% CI -2 to 25) and mOPV2 (17%, 3 to 29), but no significant difference between the two vaccines (p=0·67). The estimated effectiveness of one IPV dose was 43% (23 to 58). In the prospective study, 181 (46%) of 392 eligible cases were matched to 1557 community controls. Using community controls, we found a high effectiveness of IPV (89%, 95% CI 83 to 93, for one dose), a low per-dose effectiveness of nOPV2 (-23%, -45 to -5) and mOPV2 (1%, -23 to 20), and no significant difference between the per-dose effectiveness of nOPV2 and mOPV2 (p=0·12). INTERPRETATION: We found no significant difference in estimated effectiveness of the two oral vaccines, supporting the recommendation that the more genetically stable nOPV2 should be preferred in cVDPV2 outbreak response. Our findings highlight the role of IPV and the necessity of strengthening routine immunisation, the primary route through which IPV is delivered. FUNDING: Bill & Melinda Gates Foundation and UK Medical Research Council.
Assuntos
Poliomielite , Poliovirus , Criança , Humanos , Vacina Antipólio Oral , Estudos de Casos e Controles , Estudos Retrospectivos , Nigéria/epidemiologia , Estudos Prospectivos , alfa-Fetoproteínas , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado , ParalisiaRESUMO
In disease control or elimination programs, diagnostics are essential for assessing the impact of interventions, refining treatment strategies, and minimizing the waste of scarce resources. Although high-performance tests are desirable, increased accuracy is frequently accompanied by a requirement for more elaborate infrastructure, which is often not feasible in the developing world. These challenges are pertinent to mapping, impact monitoring, and surveillance in trachoma elimination programs. To help inform rational design of diagnostics for trachoma elimination, we outline a nonparametric multilevel latent Markov modeling approach and apply it to 2 longitudinal cohort studies of trachoma-endemic communities in Tanzania (2000-2002) and The Gambia (2001-2002) to provide simultaneous inferences about the true population prevalence of Chlamydia trachomatis infection and disease and the sensitivity, specificity, and predictive values of 3 diagnostic tests for C. trachomatis infection. Estimates were obtained by using data collected before and after mass azithromycin administration. Such estimates are particularly important for trachoma because of the absence of a true "gold standard" diagnostic test for C. trachomatis. Estimated transition probabilities provide useful insights into key epidemiologic questions about the persistence of disease and the clearance of infection as well as the required frequency of surveillance in the post-elimination setting.