Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Am Chem Soc ; 146(29): 19919-19928, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38982766

RESUMO

Cesium bismuth bromide (CBB) has garnered considerable attention as a vacancy-ordered layered perovskite with notable optoelectronic applications. However, its use as a light source has been limited due to its weak photoluminescence (PL). Here, we demonstrate metal intercalation as a novel approach to engineer the room-temperature PL of CBB using experimental and computational methods. Ag, when introduced into CBB, occupies vacant sites in the spacer region, forming octahedral coordination with surrounding Br anions. First-principles density functional theory calculations reveal that intercalated Ag represents the most energetically stable Ag species compared to other potential forms, such as Ag substituting Bi. The intercalated Ag forms a strong polaronic trap state close to the conduction band minimum and quickly captures photoexcited electrons with holes remaining in CBB layers, leading to the formation of a bound interlayer exciton, or BIE. The radiative recombination of this BIE exhibits bright room-temperature PL at 600 nm and a decay time of 38.6 ns, 35 times greater than that of free excitons, originating from the spatial separation of photocarriers by half a unit cell separation distance. The BIE as a new form of interlayer exciton is expected to inspire new research directions for vacancy-ordered perovskites.

2.
Langmuir ; 37(15): 4658-4665, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33827218

RESUMO

Self-assembled monolayers have been studied extensively due to their relative ease of synthesis and the broad range of applications for this class of materials. Monolayer-support interactions can range in strength from physisorption through covalent bond formation, with consequent variability in the robustness and fluidity of the monolayer. Monolayer-support bonding by metal ion complexation is especially attractive because of the ability to adjust the strength of interaction through metal ion identity. For such systems, both the exchange kinetics and thermodynamics of metal ion-complex formation contribute to the observed properties of the monolayer. We have synthesized metal-phosphate/phosphonate monolayers using Zr4+ and In3+ and have evaluated the metal ion dependence of monolayer dynamics for free and bound chromophores. Our findings reveal significant metal ion-dependent variations in monolayer dynamics and organization.

3.
Langmuir ; 37(16): 5089-5097, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33856223

RESUMO

We report on the structure and dynamics of a Cu2+-complexed arachidic acid (AA) monolayer formed by Langmuir-Blodgett (LB) deposition. Infrared reflection-absorption spectroscopy (IRRAS) was used to characterize aliphatic chain -CH2 symmetric and asymmetric stretching modes and determine the chain tilt angle and order as a function of subphase pH. Monolayer structure is controlled by metal ion-amphiphile interactions. At low subphase pH (<5), film buckling at high surface pressure is observed, while for high subphase pH (≥5), monolayer buckling is not observed. This finding is correlated to monolayer structural mediation by metal ion-amphiphile interactions. Dynamics and mobility of a fluorophore incorporated into the monolayer were also affected by Cu2+-AA interactions, determined by fluorescence recovery after photobleaching (FRAP) measurements. These data are consistent with the formation of a rigid film due to Cu2+ coordination to AA headgroups, with the extent of headgroup protonation being determined by the pH of the subphase during monolayer deposition.


Assuntos
Espectrofotometria Infravermelho
4.
Langmuir ; 37(2): 605-615, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33411540

RESUMO

Room temperature ionic liquids (RTILs) have a wide range of current and potential applications, in areas ranging from supercapacitor energy storage to sequestration of toxic gas phase species and use as reusable solvents for selected organic reactions. All these applications stem from their unique physical and chemical properties, which remain understood to only a limited extent. Among the issues of greatest importance is the extent to which RTILs exist as dissociated ionic species and the length scales over which some types of organizations are seen to exist in them. In this Invited Feature Article, we review the current understanding of organization in this family of materials, where opportunities lie in terms of deepening our understanding, and what potential applications would benefit from gaining such knowledge.

5.
Langmuir ; 36(21): 5717-5729, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32348147

RESUMO

This paper reports on how the surface chemistry of boron-doped nanocrystalline diamond (BDD) thin-film electrodes (H vs O) affects the wettability and electrochemical properties in two room-temperature ionic liquids (RTILs): [BMIM][PF6] and [HMIM][PF6]. Comparative measurements were made in 0.5 mol L-1 H2SO4. The BDD electrodes were modified by microwave or radio-frequency (RF) plasma treatment in H2 (H-BDD), Ar (Ar-BDD), or O2 (O-BDD). These modifications produced low-, medium-, and high-oxygen surface coverages. Atomic O/C ratios, as determined by X-ray photoelectron spectroscopy (XPS), were 0.01 for H-BDD, 0.08 for Ar-BDD, and 0.17 for O-BDD. The static contact angle of ultrapure water on the modified electrodes decreased from 110° (H-BDD) to 41° (O-BDD) with increasing surface oxygen coverage, as expected as the surface becomes more hydrophilic. Interestingly, the opposite trend was seen for both RTILs as the contact angle increased from 20° (H-BDD) to 50° (O-BDD) with increasing surface oxygen coverage. The cyclic voltammetric background current and potential-dependent capacitance in both RTILs were largest for BDD electrodes with the lowest O/C ratio (H-BDD) and smallest contact angle. Slightly larger voltammetric background currents and capacitance were observed in [HMIM][PF6] than in [BMIM][PF6]. Capacitance values ranged from 8 to 16 µF cm-2 over the potential range for H-BDD and from 4 to 6 µF cm-2 for O-BDD. The opposite trend was observed in H2SO4 as the voltammetric background current and capacitance were largest for BDD electrodes with the highest O/C ratio (O-BDD) and smallest contact angle. In summary, reducing the surface oxygen on BDD electrodes increases the wettability to two RTILs and this increases the voltammetric background current and capacitance.

6.
Langmuir ; 36(12): 3038-3045, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32148037

RESUMO

We have reported previously on the existence of charge-induced long-range organization in the room-temperature ionic liquid (RTIL), BMIM+BF4-. The induced organization is in the form of a free charge density gradient (ρf) that exists over ca. 100 µm into the RTIL in contact with a charged surface. The fluorescence anisotropy decay of a trace-level charged chromophore in the RTIL is measured as a function of distance from the indium-doped tin oxide support surface to probe this free charge density gradient. We report here on the characterization of the free charge density gradient in five different imidazolium RTILs and use these data to evaluate the magnitude of the induced free charge density gradient. Both the extent and magnitude of this gradient depend on the chemical structures of the cationic and anionic constituents of the RTIL used. Control over the magnitude of ρf has implications for the utility of RTILs for a host of applications that remain to be explored fully.

7.
Stem Cells ; 34(4): 972-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26676316

RESUMO

The metabolic insults associated with diabetes lead to low-grade chronic inflammation, retinal endothelial cell damage, and inadequate vascular repair. This is partly due to the increased activation of bone marrow (BM)-derived proinflammatory monocytes infiltrating the retina, and the compromised function of BM-derived reparative circulating angiogenic cells (CACs), which home to sites of endothelial injury and foster vascular repair. We now propose that a metabolic link leading to activated monocytes and dysfunctional CACs in diabetes involves upregulation of a central enzyme of sphingolipid signaling, acid sphingomyelinase (ASM). Selective inhibition of ASM in the BM prevented diabetes-induced activation of BM-derived microglia-like cells and normalized proinflammatory cytokine levels in the retina. ASM upregulation in diabetic CACs caused accumulation of ceramide on their cell membrane, thereby reducing membrane fluidity and impairing CAC migration. Replacing sphingomyelin with ceramide in synthetic membrane vesicles caused a similar decrease in membrane fluidity. Inhibition of ASM in diabetic CACs improved membrane fluidity and homing of these cells to damaged retinal vessels. Collectively, these findings indicate that selective modulation of sphingolipid metabolism in BM-derived cell populations in diabetes normalizes the reparative/proinflammatory cell balance and can be explored as a novel therapeutic strategy for treating diabetic retinopathy.


Assuntos
Retinopatia Diabética/genética , Retinopatia Diabética/terapia , Retina/crescimento & desenvolvimento , Vasos Retinianos/metabolismo , Esfingomielina Fosfodiesterase/genética , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Ceramidas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Inflamação/terapia , Camundongos , Monócitos/metabolismo , Monócitos/patologia , Retina/metabolismo , Retina/patologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/patologia , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo
8.
Langmuir ; 33(12): 2986-2992, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28267925

RESUMO

The translational diffusion dynamics of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at a planar phosphorylated support surface containing metal ions (Mg2+, Ca2+, Ba2+, Ni2+, Zn2+, Cd2+, Zr4+) was investigated using X-ray photoelectron spectroscopy (XPS) and fluorescence recovery after photobleaching (FRAP). Fluorescence recovery curves yielded diffusion constants on the order of 2-5 µm2/s for the chromophore-tagged 12:0 NBD-Lyso-PC. Ionic interactions between the zwitterionic headgroup and metal ions were found to play a secondary role in mediating lipid fluidity. This work provides quantitative insight into the extent to which the fluidity of a supported lipid film is mediated by the ionic interactions between headgroup and surface versus that of the lipid-lipid tailgroup interactions.


Assuntos
Metais Alcalinoterrosos/química , Metais Pesados/química , Fosfolipídeos/química , Termodinâmica , Difusão , Fluorescência , Estrutura Molecular , Espectroscopia Fotoeletrônica
9.
Langmuir ; 33(5): 1155-1161, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28094955

RESUMO

We report on the use of molecular diffusional motion over a range of length scales to characterize compositional heterogeneity in monolayer structures. This work focuses on the diffusional motion of perylene in two types of films supported on functionalized silica surfaces: single-component (stearic acid) and two-component (hydrocarbon/fluorocarbon) films. Langmuir-Blodgett (LB) monolayers were deposited directly on silica or were bound to surface-modified silica by means of metal ion complexation. The LB films were characterized by their π-A isotherms and by Brewster angle microscopy (BAM) during formation and deposition. Chromophore mobility and monolayer structural heterogeneity were evaluated by comparing rotational diffusion data (fluorescence anisotropy decay imaging) and translational diffusion data (fluorescence recovery after photobleaching) on the same LB films. Our results indicate that the mobility of the chromophore depends sensitively on both metal ion identity and film composition.


Assuntos
Fluorocarbonos/química , Hidrocarbonetos/química , Dióxido de Silício/química , Ácidos Esteáricos/química , Difusão , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
10.
Langmuir ; 32(37): 9507-12, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27563803

RESUMO

We report direct evidence for charge-induced long-range (ca. 100 µm) order in the room-temperature ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)), supported on a silica surface. We have measured the rotational diffusion dynamics of anionic, cationic, and neutral chromophores as a function of distance from a silica surface. The results reflect the excess charge density gradient induced in the IL by the (negative) charge present on the silica surface. Identical measurements in ethylene glycol reveal spatially invariant reorientation dynamics for all chromophores. Capping the silica support with Me2SiCl2 results in spatially invariant reorientation dynamics in the IL. We understand these data in the context of the IL exhibiting a spatially damped piezoelectric response mediated by IL fluidity and disorder.


Assuntos
Líquidos Iônicos/química , Temperatura , Polarização de Fluorescência , Dióxido de Silício/química
11.
Phys Chem Chem Phys ; 18(36): 25210-25220, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711634

RESUMO

A new fluorescent conjugate (PNBD) with a structure of D-π-A was designed and synthesized, where the donor (D), the acceptor (A) and the bridge (π) are naphthalyl, dicyanovinyl and phenylethynyl-phenylethynyl, respectively. To improve the solubility of the conjugate, two long alkyl chains were introduced as substituents of the central aromatic ring. Spectroscopic studies demonstrated that PNBD is a strongly solvatochromic probe which is characterized by a large molar absorption coefficient (>32 000 cm-1 M-1), long wavelength absorption (>410 nm), large solvatochromic emission range (470-650 nm), high photochemical stability, and good solubility in common organic solvents. The fluorescent quantum yield of PNBD is limited in some polar solvents due to dual emission, a phenomenon ascribed to radiative decay from a higher excited singlet state. To eliminate dual emission, a covalently bound dimer (BPNBD) of PNBD characterized by weak vibronic coupling, was designed and synthesized. The dimer constituents are linked by a single bond between the naphthalyl moieties of the two PNBD monomers. As expected, BPNBD maintains almost all the strong points of the monomer, exhibits a substantial increase in fluorescence quantum yield, and eliminates dual emission by facilitating efficient internal conversion. Importantly, the use of PNBD and BPNBD in concert provides unprecedented discrimination among solvents of similar structures, such as (CH2Cl2, CHCl3, CCl4), (ethyl ether, THF, dioxane), or (methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-decanol), allowing rapid and selective visual identification.

12.
Biochim Biophys Acta ; 1837(8): 1227-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24721391

RESUMO

Dinoflagellates from the genus Symbiodinium form symbiotic associations with cnidarians including corals and anemones. The photosynthetic apparatuses of these dinoflagellates possess a unique photosynthetic antenna system incorporating the peridinin-chlorophyll a-protein (PCP). It has been proposed that the appearance of a PCP-specific 77K fluorescence emission band around 672-675 nm indicates that high light treatment results in PCP dissociation from intrinsic membrane antenna complexes, blocking excitation transfer to the intrinsic membrane-bound antenna complexes, chlorophyll a-chlorophyll c2-peridinin-protein-complex (acpPC) and associated photosystems (Reynolds et al., 2008 Proc Natl Acad Sci USA 105:13674-13678).We have tested this model using time-resolved fluorescence decay kinetics in conjunction with global fitting to compare the time-evolution of the PCP spectral bands before and after high light exposure. Our results show that no long-lived PCP fluorescence emission components appear either before or after high light treatment, indicating that the efficiency of excitation transfer from PCP to membrane antenna systems remains efficient and rapid even after exposure to high light. The apparent increased relative emission at around 675nm was, instead, caused by strong preferential exciton quenching of the membrane antenna complexes associated with acpPC and reaction centers. This strong non-photochemical quenching (NPQ) is consistent with the activation of xanthophyll-associated quenching mechanisms and the generally-observed avoidance in nature of long-lived photoexcited states that can lead to oxidative damage. The acpPC component appears to be the most strongly quenched under high light exposure suggesting that it houses the photoprotective exciton quencher.


Assuntos
Carotenoides/genética , Dinoflagellida/genética , Complexos de Proteínas Captadores de Luz/genética , Fotossíntese/genética , Proteínas de Protozoários/genética , Carotenoides/química , Dinoflagellida/crescimento & desenvolvimento , Transferência de Energia , Fluorescência , Cinética , Luz , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II , Proteínas de Protozoários/química
13.
J Bioenerg Biomembr ; 47(5): 419-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26358423

RESUMO

Isoprene emission protects plants from a variety of abiotic stresses. It has been hypothesized to do so by partitioning into cellular membranes, particularly the thylakoid membrane. At sufficiently high concentrations, this partitioning may alter the physical properties of membranes. As much as several per cent of carbon taken up in photosynthesis is re-emitted as isoprene but the concentration of isoprene in the thylakoid membrane of rapidly emitting plants has seldom been considered. In this study, the intramembrane concentration of isoprene in phosphatidylcholine liposomes equilibrated to a physiologically relevant gas phase concentration of 20 µL L(-1) isoprene was less than predicted by ab initio calculations based on the octanol-water partitioning coefficient of isoprene while the concentration in thylakoid membranes was more. However, the concentration in both systems was roughly two orders of magnitude lower than previously assumed. High concentrations of isoprene (2000 µL L(-1) gas phase) failed to alter the viscosity of phosphatidylcholine liposomes as measured with perylene, a molecular probe of membrane structure. These results strongly suggest that the physiological concentration of isoprene within the leaves of highly emitting plants is too low to affect the dynamics of thylakoid membrane acyl lipids. It is speculated that isoprene may bind to and modulate the dynamics of thylakoid embedded proteins.


Assuntos
Butadienos/química , Hemiterpenos/química , Membranas Artificiais , Pentanos/química , Folhas de Planta/química , Spinacia oleracea/química , Tilacoides/química
14.
Langmuir ; 30(26): 7645-53, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24922083

RESUMO

The effect of surfactant micelles on the photophysical properties of a cationic bispyrene fluorophore, Py-diIM-Py, was systemically examined. The results from series of measurements including UV-vis absorption, steady-state fluorescence emission, quantum yield, fluorescence lifetime, and time-resolved emission spectra reveal that the cationic fluorophore is only encapsulated by the anionic sodium dodecyl sulfate (SDS) surfactant micelles and not incorporated in the cationic dodecyltrimethylammonium bromide (DTAB) and neutral Triton X-100 (TX100) surfactant micelles. This different fluorophore location in the micellar solutions significantly influences its sensing behavior to various explosives. Fluorescence quenching studies reveal that the simple variation of micellar systems leads to significant changes in the sensitivity and selectivity of the fluorescent sensor to explosives. The sensor exhibits an on-off response to multiple explosives with the highest sensitivity to picric acid (PA) in the anionic SDS micelles. In the cationic DTAB micelles, it displays the highest on-off responses to PYX. Both the sensitivity and selectivity to PYX in the cationic micelles are enhanced compared with that to PA in the anionic micelles. However, the poor encapsulation in the neutral surfactant TX100 micelles leads to fluorescence instability of the fluorophore and fails to function as a sensor system. Time-resolved fluorescence decays in the presence of explosives reveal that the quenching mechanism of two micellar sensor systems to explosives is static in nature. The present work demonstrates that the electrostatic interaction between the cationic fluorophore and differently charged micelles plays a determinative role in adjusting its distribution in micellar solutions, which further influences the sensing behavior of the obtained micellar sensor systems.

15.
Rapid Commun Mass Spectrom ; 28(19): 2134-40, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25156603

RESUMO

RATIONALE: Excited state pooling reactions are a central part of some models of ultraviolet matrix-assisted laser desorption/ionization (MALDI) mechanisms. Evidence has been found for pooling in several matrix materials, but a recent report of pure exponential fluorescence decay at MALDI-relevant laser fluences suggested that 2,4,6-trihydroxy-acetophenone (THAP) may be an example of a matrix in which pooling does not occur (Lin et al., Rapid Commun. Mass Spectrom. 2014, 28, 77). However, those data were instrumentally limited in dynamic range and signal/noise ratio, and the conclusion does not take into account several aspects of THAP excited state dynamics. METHODS: Using time-correlated single photon counting, and absorption and emission spectroscopies, the excited state dynamics of THAP are reexamined. RESULTS: Like many other aromatic ketones and acetophenone, isolated THAP molecules undergo very efficient intersystem crossing. No fluorescence is observed in dilute solution. In the solid state, efficient fluorescence reappears, but is non-exponential even at very low excitation intensity. The solvent used for sample preparation was found to have a large effect on the spectra and decay curves. Needle-like crystals seem to be correlated with reduced intersystem crossing. CONCLUSIONS: THAP solid state fluorescence is entirely due to intermolecular interactions. Activation of fluorescence, instead of quenching, is a clear indicator of delocalized excited state phenomena in THAP. Contrary to the conclusions of Lin et al., the greatly increased singlet lifetime in the solid state substantially increases the probability that pooling-type reactions are indeed involved in ionization processes. The sensitivity of fluorescence and phosphorescence on sample morphology appears to reflect changes in intermolecular interactions due to crystal packing. Pooling charge separation pathways based on known triplet-triplet ionization reactions of aromatic ketones are proposed.


Assuntos
Acetofenonas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fluorescência
16.
Biomedicines ; 11(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002093

RESUMO

In craniofacial research and routine dental clinical procedures, multifunctional materials with antimicrobial properties are in constant demand. Ionic liquids (ILs) are one such multifunctional intelligent material. Over the last three decades, ILs have been explored for different biomedical applications due to their unique physical and chemical properties, high task specificity, and sustainability. Their stable physical and chemical characteristics and extremely low vapor pressure make them suitable for various applications. Their unique properties, such as density, viscosity, and hydrophilicity/hydrophobicity, may provide higher performance as a potential dental material. ILs have functionalities for optimizing dental implants, infiltrate materials, oral hygiene maintenance products, and restorative materials. They also serve as sensors for dental chairside usage to detect oral cancer, periodontal lesions, breath-based sobriety, and dental hard tissue defects. With further optimization, ILs might also make vital contributions to craniofacial regeneration, oral hygiene maintenance, oral disease prevention, and antimicrobial materials. This review explores the different advantages and properties of ILs as possible dental material.

18.
Chemistry ; 18(1): 310-20, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22143983

RESUMO

We report on the preparation of water-filled polymer microvessels through the photopolymerization of pyrrole in a water/chloroform emulsion. The resulting structures were characterized by complementary spectroscopic and microscopic techniques, including Raman spectroscopy, XPS, SEM, and TEM. The encapsulation of fluorescent, magnetic, and ionic species within the microvessels has been demonstrated. Confocal microscopy and fluorescence anisotropy measurements revealed that the encapsulated chromophore (Rhodamine 6G) resides within voids in the capsules; however, strong interaction of the dye with polypyrrole results in a measurable decrease in its rotational dynamics. Microvessels loaded with ferrofluid exhibit magnetic properties, and their structures can be directed with an external magnetic field. TEM measurements allowed imaging of individual nanoparticles entrapped within the vessels. The application of Cu(2+)-loaded microvessels as a transducer layer in all-solid-state ion-selective electrodes was also demonstrated.


Assuntos
Corantes Fluorescentes , Nanopartículas/química , Polímeros/química , Polímeros/síntese química , Pirróis/química , Pirróis/síntese química , Rodaminas , Algoritmos , Cobre/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Análise Espectral Raman
19.
J Am Geriatr Soc ; 70(10): 2805-2817, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35791806

RESUMO

BACKGROUND: In managing older adults with atrial fibrillation (AF), their symptomatology impacts their well-being and may inform treatment decision-making. We examined AF symptom perception, its impact on quality of life (QoL), and its relation to treatment strategies in older adults with AF. METHODS: Data were obtained from older adults with AF enrolled in a multicenter study conducted at clinic sites in Massachusetts and Georgia between 2016 and 2018. Participants were stratified into three age groups: 65-74 (youngest-old), 75-84 (middle-old), and ≥85 (oldest). Perception of AF symptoms was assessed by participant self-report during their clinic visit and at study enrollment by the Atrial Fibrillation Effect on Quality-of-Life Questionnaire which assessed cardiac-specific and non-specific, non-cardiac AF symptoms and their impact on QoL. Treatment strategies (rate or rhythm control) utilized were ascertained from electronic medical records. RESULTS: Among the 1184 participants (mean age 75 years, 48% women, 86% Non-Hispanic White), 51% were aged 65-74 years, 36% were 75-84 years, and 13% were ≥ 85 years. The most commonly reported AF symptoms were non-specific, non-cardiac symptoms (fatigue, dyspnea, lightheadedness) with similar prevalence and impact on QoL in all age groups. Cardiac-specific AF symptoms (palpitations, irregular heartbeat, pause in heart activity) were less prevalent, but most commonly reported by the youngest participants (65-74 years), who endorsed considerable impact of these symptoms on their QoL. Overall, those who reported experiencing any AF symptoms during their clinic visit were more likely to have received rhythm compared with rate control (OR: 1.56; 95% CI: 1.18-2.04) with similar findings for all age groups except those aged ≥85 years. CONCLUSIONS: Our findings suggest a high prevalence of non-specific, non-cardiac symptoms among older adults with AF and that cardiac-specific AF symptoms may exert considerable impact on their QoL. The presence of any AF symptoms may drive more rhythm control in a majority of older adults.


Assuntos
Fibrilação Atrial , Idoso , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/terapia , Feminino , Humanos , Masculino , Percepção , Qualidade de Vida , Autorrelato , Inquéritos e Questionários
20.
Langmuir ; 27(20): 12720-9, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21899311

RESUMO

The encapsulation of guest molecules within polymeric hollow nano- or microscale structures is a rapidly developing field of interdisciplinary research due to a variety of applications ranging from drug delivery and sensor fabrication to nanoscale synthesis and bioinspired mineralization. We report on the encapsulation of pyrene within three-dimensional polypyrrole microvessels synthesized by precipitation polymerization of pyrrole onto toluene droplets that contain pyrene. Steady state and time-resolved fluorescence measurements show that the optical response and dynamics of encapsulated pyrene is significantly different from that in the free solution, likely due to interactions with oligomeric species generated during the polymerization process that partition into the organic core of the microvessel. Our results indicate that the encapsulation process can have a significant influence on the local environment of encapsulated species, an issue that is critical from the perspective of potential synthetic or medical applications.


Assuntos
Cápsulas , Polímeros/química , Pirenos/química , Pirróis/química , Cápsulas/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA