Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(3): 1212-1216, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30608669

RESUMO

Using tandem in situ monitoring and isotope-labeled solids, we reveal that mechanochemical ball-milling overcomes inherently slow solid-state diffusion through continuous comminution and growth of milled particles. This process occurs with or without a net chemical reaction and also occurs between solids and liquid additives that can be practically used for highly efficient deuterium labeling of solids. The presented findings reveal a fundamental aspect of milling reactions and also delineate a methodology that should be considered in the study of mechanochemical reaction mechanisms.

2.
Inorg Chem ; 58(2): 1040-1047, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30618251

RESUMO

Lithium oxosilicate was synthesized via the solid-state method using Li2O and SiO2 as starting reactants. In situ synchrotron powder X-ray diffraction (SPRXD) coupled with Rietveld refinement allowed describing the synthesis as a two-step process where Li2O and SiO2 react to form Li4SiO4 and, at higher temperatures, lithium orthosilicate reacts with the remaining Li2O to form Li8SiO6. Time-resolved measurements allowed determining the temperatures at which each phase transformation occurs as well as the time required to complete the synthesis. The CO2 capture properties of Li8SiO6 in the temperature range from room temperature to 770 °C were studied in detail by time-resolved in situ SPXRD. The crystallographic phases present during Li8SiO6 carbonation were identified and quantified via Rietveld analysis. Results showed that, within the temperature range from 200 to 690 °C, Li8SiO6 carbonation produces Li4SiO4 and Li2CO3, while, at temperatures from 690 to 750 °C, a secondary reaction occurs, where previously formed Li4SiO4 reacts with CO2, producing Li2SiO3 and Li2CO3. These findings allowed proposing a mechanism of reaction for Li8SiO6 carbonation in the temperature range that is of interest for high temperature solid-state sorbents.

3.
Chemistry ; 23(56): 13941-13949, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28639258

RESUMO

We report herein quantitative in situ monitoring by simultaneous PXRD and Raman spectroscopy of the mechanochemical reaction between benzoic acid and nicotinamide, affording a rich polymorphic system with four new cocrystal polymorphs, multiple phase transformations, and a variety of reaction pathways. After observing polymorphs by in situ monitoring, we were able to isolate and characterize three of the four polymorphs, most of which are not accessible from solution. Relative stabilities among the isolated polymorphs at ambient conditions were established by slurry experiments. Using two complementary methods for in situ monitoring enabled quantitative assessment and kinetic analysis of each studied mechanochemical reaction, even when involving unknown crystal structures, and short-lived intermediates. In situ Raman monitoring was introduced here also as a standalone laboratory technique for quantitative assessment of mechanochemical reactions and understanding of mechanochemical reactivity. Our results provide an important step toward a complete and high-throughput quantitative approach to mechanochemical reaction kinetics and mechanisms, necessary for the development of the mechanistic framework of milling reactions.

4.
Sci Rep ; 13(1): 20447, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993603

RESUMO

[Formula: see text] is a promising material for developing high-capacity anodes for lithium-ion batteries (LIBs). However, microstructural changes of [Formula: see text] anodes at the particle and electrode level upon prolonged cycling remains unclear. In this work, the causes leading to capacity fade on [Formula: see text] anodes were investigated and simple strategies to attenuate anode degradation were explored. Nanostructured [Formula: see text] from diatomaceous earth was integrated into anodes containing different quantities of conductive carbon in the form of either a conductive additive or a nanometric coating layer. Galvanostatic cycling was conducted for 200 cycles and distinctive trends on capacity fade were identified. A thorough analysis of the anodes at selected cycle numbers was performed using a toolset of characterization techniques, including electrochemical impedance spectroscopy, FIB-SEM cross-sectional analysis and TEM inspections. Significant fragmentation of [Formula: see text] particles surface and formation of filigree structures upon cycling are reported for the first time. Morphological changes are accompanied by an increase in impedance and a loss of electroactive surface area. Carbon-coating is found to restrict particle fracture and to increase capacity retention to 66%, compared to 47% for uncoated samples after 200 cycles. Results provide valuable insights to improve cycling stability of [Formula: see text] anodes for next-generation LIBs.

5.
RSC Adv ; 10(55): 33490-33498, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515037

RESUMO

Diatomaceous earth (DE) is a naturally occurring silica source constituted by fossilized remains of diatoms, a type of hard-shelled algae, which exhibits a complex hierarchically nanostructured porous silica network. In this work, we analyze the positive effects of reducing DE SiO2 particles to the sub-micrometer level and implementing an optimized carbon coating treatment to obtain DE SiO2 anodes with superior electrochemical performance for Li-ion batteries. Pristine DE with an average particle size of 17 µm is able to deliver a specific capacity of 575 mA h g-1 after 100 cycles at a constant current of 100 mA g-1, and reducing the particle size to 470 nm enhanced the reversible specific capacity to 740 mA h g-1. Ball-milled DE particles were later subjected to a carbon coating treatment involving the thermal decomposition of a carbohydrate precursor at the surface of the particles. Coated ball-milled silica particles reached stable specific capacities of 840 mA h g-1 after 100 cycles and displayed significantly improved rate capability, with discharge specific capacities increasing from 220 mA h g-1 (uncoated ball-milled SiO2) to 450 mA h g-1 (carbon coated ball-milled SiO2) at 2 A g-1. In order to trigger SiO2 reactivity towards lithium, all samples were subjected to an electrochemical activation procedure prior to electrochemical testing. XRD measurements on the activated electrodes revealed that the initial crystalline silica was completely converted to amorphous phases with short range ordering, therefore evidencing the effective role of the activation procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA