Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(12): 8363-8372, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28280810

RESUMO

Single domain superparamagnetic ferrite nanoparticles with the composition MFe2O4 (M = Fe, Co, Zn) have been prepared by thermal decomposition of metal acetylacetonates in diphenyl ether or dibenzyl ether, using oleic acid in the presence of oleylamine as a stabilizing agent. The Fe, Co and Zn ferrite nanoparticles are monodisperse with diameters of 4.9, 4.4 and 4.7 nm, respectively. The TG and IR results indicate that four or six carboxylate groups per nm2 are bonded at the surface of the particles acting as chelating and/or bridging bidentate ligands depending on the composition. The oleate groups minimize the interparticle interactions in Fe and Zn ferrite samples, while in the Co ferrite sample dipolar interactions produce broad maxima in the ZFC and energy barriers distribution curves. The inversion degree has been estimated from the Raman spectra and the obtained x values have been used to calculate the saturation magnetization and compare them with the experimental MS values. Compared to bulk materials, the magnetization value is higher for the Zn ferrite sample due to its mixed spinel cation distribution. For the Co ferrite sample, and probably for the Fe one, the low value of saturation magnetization seems to be due to the surface disordered layer of canted spins. Compared to non-coated nanoparticles with the same composition and similar size, the oleate groups, covalently bonded to the superficial cations, increase the anisotropy field and decrease the magnetization.

2.
Phys Chem Chem Phys ; 18(13): 9186-93, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26974054

RESUMO

CoFe2O4 particles of 16 nm and 17 nm embedded in a silica matrix have been prepared through the hydrothermal method and the sol-gel method, respectively. From neutron powder diffraction a cation distribution of (Fe(0.72)Co(0.28))[Fe(1.28)Co(0.72)]O4 has been determined for Co-ferrite particles of 17 nm, which is in agreement with its particle size taking into account the reported x values for other nanometric Co-ferrite particles. Magnetic measurements were performed up to 700 K as the prepared ferrite samples present blocking temperatures above room temperature. The temperature dependence of the superparamagnetic moment has been analyzed and presents for both samples an abrupt drop in the magnitude once the blocking temperature is overcome. The temperature dependence of the calculated magnetic field needed to reach the magnetic saturation of the samples allows us to determine the temperature range for which the nanoparticles show superparamagnetic behaviour. The ordering temperature is in both cases lower than the tabulated one for bulk Co-ferrite (793 K) which has been ascribed mainly to two factors: a different cation distribution and the nanometric particle size, both contributing to lowering of the strength of the superexchange interactions.

3.
Dalton Trans ; 46(35): 11698-11703, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28825758

RESUMO

YBCO samples with different microstructures were prepared after the thermal treatment of a precursor previously obtained by autocombustion. A drastic influence of the particle size on the magnetic behavior of the samples was observed. Thus, particles smaller than 110 nm do not exhibit superconducting properties and for those ranging around 200 nm the diamagnetic signal characteristic of the superconductivity at low temperature disappears in a large applied magnetic field. Particles larger than 300 nm do not exhibit the particle size effect. Accompanying such a phenomenon, an increase of the superconducting critical temperature is observed with the augmentation of the particle size, the lowest value being 18 K which corresponds to 110 nm particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA