RESUMO
OBJECTIVES: To search for new means of combatting carbapenemase-producing strains of Klebsiella pneumoniae by repurposing the anti-helminth drug niclosamide as an antimicrobial agent and combining it with the efflux pump inhibitor (EPI) phenyl-arginine-ß-naphthylamide (PaßN). METHODS: Niclosamide and PaßN MICs were determined for six clinical K. pneumoniae isolates harbouring different carbapenemases by broth microdilution and chequerboard assays. Time-kill curves in the presence of each drug alone and in combination were conducted. The viability of bacterial cells in the presence of repetitive exposures at 8â h to the treatment at the same concentration of niclosamide and/or PaßN (adapted isolates) was determined. The acrAB-tolC genes and their regulators were sequenced and quantitative RT-PCR was performed to assess whether the acrA gene was overexpressed in adapted isolates compared with non-adapted isolates. Finally, the MICs of several antimicrobials were determined for the adapted isolates. RESULTS: Niclosamide and PaßN had synergistic effects on the six isolates in vitro, but adaptation appeared when the treatment was applied to the medium every 8â h, with an increase of 6- to 12-fold in the MIC of PaßN. Sequencing revealed different mutations in the regulators of the tripartite AcrAB-TolC efflux pump (ramR and acrR) that may be responsible for the overexpression of the efflux pump and the adaptation to this combination. Co-resistance to different antimicrobials confirmed the overexpression of the AcrAB-TolC efflux pump. CONCLUSIONS: Despite the synergistic effect that preliminary in vitro stages may suggest, the combinations of drugs and EPI may generate adapted phenotypes associated with antimicrobial resistance that must be taken into consideration.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Dipeptídeos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Niclosamida/farmacologiaRESUMO
Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13. Several clinical K. pneumoniae isolates were characterized, and an imipenem-resistant isolate (harboring OXA-245 ß-lactamase) and a persister isolate were selected for study. The mitomycin C and imipenem MICs for both isolates were determined by the broth microdilution method. Time-kill curve data were obtained by optical density at 600 nm (OD600) measurement and CFU enumeration in the presence of each drug alone and with the phage. The frequency of occurrence of mutants resistant to each drug and the combinations was also calculated, and the efficacy of the combination treatments was evaluated using an in vivo infection model (Galleria mellonella). The lytic phage vB_KpnM-VAC13 and mitomycin C had synergistic effects on imipenem-resistant and persister isolates, both in vitro and in vivo. The phage-imipenem combination successfully killed the persisters but not the imipenem-resistant isolate harboring OXA-245 ß-lactamase. Interestingly, the combinations decreased the emergence of in vitro resistant mutants of both isolates. Combinations of the lytic phage vB_KpnM-VAC13 with mitomycin C and imipenem were effective against the persister K. pneumoniae isolate. The lytic phage-mitomycin C combination was also effective against imipenem-resistant K. pneumoniae strains harboring OXA-245 ß-lactamase.
Assuntos
Bacteriófagos , Infecções por Klebsiella , Antibacterianos/farmacologia , Humanos , Imipenem/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mitomicina/farmacologia , beta-Lactamases/genéticaRESUMO
Antibiotic failure not only is due to the development of resistance by pathogens but can also often be explained by persistence and tolerance. Persistence and tolerance can be included in the "persistent phenotype," with high relevance for clinics. Two of the most important molecular mechanisms involved in tolerance and persistence are toxin-antitoxin (TA) modules and signaling via guanosine pentaphosphate/tetraphosphate [(p)ppGpp], also known as "magic spot." (p)ppGpp is a very important stress alarmone which orchestrates the stringent response in bacteria; hence, (p)ppGpp is produced during amino acid or fatty acid starvation by proteins belonging to the RelA/SpoT homolog family (RSH). However, (p)ppGpp levels can also accumulate in response to a wide range of signals, including oxygen variation, pH downshift, osmotic shock, temperature shift, or even exposure to darkness. Furthermore, the stringent response is not only involved in responses to environmental stresses (starvation for carbon sources, fatty acids, and phosphates or heat shock), but it is also used in bacterial pathogenesis, host invasion, and antibiotic tolerance and persistence. Given the exhaustive and contradictory literature surrounding the role of (p)ppGpp in bacterial persistence, and with the aim of summarizing what is known so far about the magic spot in this bacterial stage, this review provides new insights into the link between the stringent response and persistence. Moreover, we review some of the innovative treatments that have (p)ppGpp as a target, which are in the spotlight of the scientific community as candidates for effective antipersistence agents.
Assuntos
Antitoxinas , Guanosina Pentafosfato , Antitoxinas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina TetrafosfatoRESUMO
Tuberculosis (TB) remains a major health problem worldwide. Control of TB requires rapid, accurate diagnosis of active disease. However, extrapulmonary TB is very difficult to diagnose because the clinical specimens have very low bacterial loads. Several molecular methods involving direct detection of the Mycobacterium tuberculosis complex (MTBC) have emerged in recent years. Real-time PCR amplification simultaneously combines the amplification and detection of candidate sequences by using fluorescent probes (mainly TaqMan or Molecular Beacons) in automated systems. The multiplex real-time PCR-short assay is performed using locked nucleic acid (LNA) probes (length, 8 to 9 nucleotides) in combination with CodUNG to detect multiple pathogens in clinical samples. In this study, we evaluated the performance of this novel multiplex assay for detecting the MTBC in comparison with that of the conventional culture-based method. The multiplex real-time PCR-shortTUB assay targets two genes, whiB3 (redox-responsive transcriptional regulator) and pstS1 (phosphate-specific transporter), yielding limits of detection (LOD) of 10 copies and 100 copies, respectively, and amplification efficiencies of 92% and 99.7%, respectively. A total of 94 extrapulmonary samples and pulmonary samples with low mycobacterial loads (all smear negative; 75 MTBC culture positive) were analyzed using the test, yielding an overall sensitivity of 88% and a specificity of 95%. For pleural fluid and tissues/biopsy specimens, the sensitivity was 83% and 85%, respectively. In summary, this technique could be implemented in routine clinical microbiology testing to reduce the overall turnaround time for MTBC detection and may therefore be a useful tool for the diagnosis of extrapulmonary tuberculosis and diagnosis using pulmonary samples with low mycobacterial loads.
Assuntos
Carga Bacteriana/métodos , Pulmão/microbiologia , Reação em Cadeia da Polimerase Multiplex/normas , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oligonucleotídeos/genética , Derrame Pleural/microbiologia , Sensibilidade e EspecificidadeRESUMO
The molecular mechanisms of tolerance and persistence associated with several compounds in Acinetobacter baumannii clinical isolates are unknown. Using transcriptomic and phenotypic studies, we found a link between mechanisms of bacterial tolerance to chlorhexidine and the development of persistence in the presence of imipenem in an A. baumannii strain belonging to clinical clone ST-2 (OXA-24 ß-lactamase and AbkAB toxin-antitoxin [TA] system carried in a plasmid). Interestingly, the strain A. baumannii ATCC 17978 (AbkAB TA system from plasmid) showed persistence in the presence of imipenem and chlorhexidine.
Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/uso terapêutico , Clorexidina/uso terapêutico , Tolerância a Medicamentos/genética , Imipenem/uso terapêutico , Sistemas Toxina-Antitoxina/genética , beta-Lactamases/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/patogenicidade , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genéticaRESUMO
This study describes the microbial community richness and dynamics of two semi-continuously stirred biogas reactors during a time-course study of 120 days. The reactors were fed with untreated and autoclaved (160 °C, 6.2 bar) food waste. The microbial community was analysed using a bacteria- and archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism (T-RFLP) approach. Compared with the archaeal community, the structures and functions of the bacterial community were found to be more complex and diverse. With the principal coordinates analysis it was possible to separate both microbial communities with 75 and 50% difference for bacteria and archaea, respectively, in the two reactors fed with the same waste but with different pretreatment. Despite the use of the same feeding material, anaerobic reactors showed a distinct community profile which could explain the differences in methane yield (2-17%). The community composition was highly dynamic for bacteria and archaea during the entire studied period. This study illustrates that microbial communities are dependent on feeding material and that correlations among specific bacterial and archaeal T-RFs can be established.
Assuntos
Archaea/genética , Bactérias/genética , Metano/biossíntese , Consórcios Microbianos/genética , RNA Ribossômico 16S/genética , Archaea/metabolismo , Bactérias/metabolismo , Biocombustíveis , Reatores Biológicos , Alimentos , Variação Genética , Temperatura Alta , Polimorfismo de Fragmento de Restrição , Pressão , Análise de Componente Principal , ResíduosRESUMO
Interest in phage therapy has increased in the last decade, and animal models have become essential in this field. The larval stage of the wax moth, Galleria mellonella, represents an easy-to-handle model. The larvae have an innate immune response and survive at 37 °C, which is ideal for infection and antimicrobial studies with bacteriophages. In this chapter, we describe the procedures used to study the antimicrobial activity of bacteriophages in a G. mellonella infection model.
Assuntos
Bacteriófagos , Mariposas , Terapia por Fagos , Animais , Bacteriófagos/fisiologia , Modelos Animais de Doenças , LarvaRESUMO
Background: Multidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in Klebsiella pneumoniae strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms. Results: Cinnamaldehyde (CAD) was added to K. pneumoniae cultures to inhibit QS and thus demonstrate the role of the signaling system in regulating the anti-phage defense mechanism. The QS inhibitory activity of CAD in K. pneumoniae was confirmed by a reduction in the quantitative expression of the lsrB gene (AI-2 pathway) and by proteomic analysis. The infection assays showed that the phage was able to infect a previously resistant K. pneumoniae strain in the cultures to which CAD was added. The results were confirmed using proteomic analysis. Thus, anti-phage defense-related proteins from different systems, such as cyclic oligonucleotide-based bacterial anti-phage signaling systems (CBASS), restriction-modification (R-M) systems, clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system, and bacteriophage control infection (BCI), were present in the cultures with phage but not in the cultures with phage and CAD. When the QS and anti-phage defense systems were inhibited by the combined treatment, proteins related to phage infection and proliferation, such as the tail fiber protein, the cell division protein DamX, and the outer membrane channel protein TolC, were detected. Conclusion: Inhibition of QS reduces phage resistance in K. pneumoniae, resulting in the infection of a previously resistant strain by phage, with a significant increase in phage proliferation and a significant reduction in bacterial growth. QS inhibitors could be considered for therapeutic application by including them in phage cocktails or in phage-antibiotic combinations to enhance synergistic effects and reduce the emergence of antimicrobial resistance.
RESUMO
The combination of several therapeutic strategies is often seen as a good way to decrease resistance rates, since bacteria can more easily overcome single-drug treatments than multi-drug ones. This strategy is especially attractive when several targets and subpopulations are affected, as it is the case of Klebsiella pneumoniae persister cells, a subpopulation of bacteria able to transiently survive antibiotic exposures. This work aims to evaluate the potential of a repurposed anticancer drug, mitomycin C, combined with the K. pneumoniae lytic phage vB_KpnM-VAC13 in vitro and its safety in an in vivo murine model against two clinical isolates of this pathogen, one of them exhibiting an imipenem-persister phenotype. At the same time, we verified the absence of toxicity of mitomycin C at the concentration using the human chondrocyte cell line T/C28a2. The viability of these human cells was checked using both cytotoxicity assays and flow cytometry.
RESUMO
Antibiotic failure is one of the most worrisome threats to global health. Among the new therapeutic efforts that are being explored, the use of bacteriophages (viruses that kill bacteria), also known as 'phages', is being extensively studied as a strategy to target bacterial pathogens. However, one of the main drawbacks of phage therapy is the plethora of defence mechanisms that bacteria use to defend themselves against phages. This review aims to summarize the therapeutic approaches that are being evaluated to overcome the bacterial defence systems, including the most innovative therapeutic approaches applied: circumvention of phage receptor mutations; modification of prophages; targeting of CRISPR-Cas systems and the biofilm matrix; engineering of safer and more efficacious phages; and inhibition of the anti-persister strategies used by bacteria.
RESUMO
The importance of cereals and pulses in the diet is widely recognized, and consumers are seeking for ways to balance their diet with plant-based options. However, the presence of antinutritional factors reduces their nutritional value by decreasing the bioavailability of proteins and minerals. This study's aim was to select microbes and fermentation conditions to affect the nutritional value, taste, and safety of products. Single lactic acid bacteria (LAB) strains that reduce the levels of antinutrients in faba bean and pea were utilized in the selection of microbes for two starter mixtures. They were studied in fermentations of a faba bean-oat mixture at two temperatures for 24, 48, and 72 h. The levels of antinutrients, including galacto-oligosaccharides and pyrimidine glycosides (vicine and convicine), were determined. Furthermore, a sensory evaluation of the fermented product was conducted. Fermentations with selected single strains and microbial mixtures showed a significant reduction in the content of antinutrients, and vicine and convicine decreased by up to 99.7% and 96.1%, respectively. Similarly, the oligosaccharides were almost completely degraded. Selected LAB mixtures were also shown to affect the product's sensory characteristics. Microbial consortia were shown to perform effectively in the fermentation of protein-rich materials, resulting in products with improved nutritional value and organoleptic properties.
RESUMO
Prophages are bacteriophages integrated into the bacterial host's chromosome. This research aims to analyze and characterize the existing prophages within a collection of 53 Pseudomonas aeruginosa strains from intensive care units (ICUs) in Portugal and Spain. A total of 113 prophages were localized in the collection, with 18 of them being present in more than one strain simultaneously. After annotation, five of them were discarded as incomplete, and the 13 remaining prophages were characterized. Of 13, 10 belonged to the siphovirus tail morphology group, 2 to the podovirus tail morphology group, and 1 to the myovirus tail morphology group. All prophages had a length ranging from 20,199 to 63,401 bp and a GC% between 56.2% and 63.6%. The number of open reading frames (ORFs) oscillated between 32 and 88, and in 3/13 prophages, more than 50% of the ORFs had an unknown function. With our findings, we show that prophages are present in the majority of the P. aeruginosa strains isolated from Portuguese and Spanish critically ill patients, many of them found in more than one circulating strain at the same time and following a similar clonal distribution pattern. Although a great sum of ORFs had an unknown function, number of proteins in relation to viral defense (anti-CRISPR proteins, toxin/antitoxin modules, proteins against restriction-modification systems) as well as to prophage interference into their host's quorum sensing system and regulatory cascades were found. This supports the idea that prophages have an influence in bacterial pathogenesis and anti-phage defense. IMPORTANCE Despite being known for decades, prophages remain understudied when compared to the lytic phages employed in phage therapy. This research aims to shed some light into the nature, composition, and role of prophages found within a set of circulating strains of Pseudomas aeruginosa, with special attention to high-risk clones. Given the fact that prophages can effectively influence bacterial pathogenesis, prophage basic research constitutes a topic of growing interest. Furthermore, the abundance of viral defense and regulatory proteins within prophage genomes detected in this study evidences the importance of characterizing the most frequent prophages in circulating clinical strains and in high-risk clones if phage therapy is to be used.
Assuntos
Prófagos , Pseudomonas aeruginosa , Humanos , Prófagos/genética , Genoma Viral , Cuidados Críticos , EspanhaRESUMO
Mucins are important glycoproteins that form a protective layer throughout the gastrointestinal and respiratory tracts. There is scientific evidence of increase in phage-resistance in the presence of mucin for some bacterial pathogens. Manipulation in mucin composition may ultimately influence the effectiveness of phage therapy. In this work, two clinical strains of K. pneumoniae (K3574 and K3325), were exposed to the lytic bacteriophage vB_KpnS-VAC35 in the presence and absence of mucin on a long-term co-evolution assay, in an attempt to mimic in vitro the exposure to mucins that bacteria and their phages face in vivo. Enumerations of the bacterial and phage counts at regular time intervals were conducted, and extraction of the genomic DNA of co-evolved bacteria to the phage, the mucin and both was performed. We determined the frequency of phage-resistant mutants in the presence and absence of mucin and including a mucolytic agent (N-acetyl L-cysteine, NAC), and sequenced them using Nanopore. We phenotypically demonstrated that the presence of mucin induces the emergence of bacterial resistance against lytic phages, effectively decreased in the presence of NAC. In addition, the genomic analysis revealed some of the genes relevant to the development of phage resistance in long-term co-evolution, with a special focus on the mucoid environment. Genes involved in the metabolism of carbohydrates were mutated in the presence of mucin. In conclusion, the use of mucolytic agents prior to the administration of lytic phages could be an interesting therapeutic option when addressing K. pneumoniae infections in environments where mucin is overproduced.
RESUMO
Phage tail-like bacteriocins (PTLBs) are large proteomic structures similar to the tail phages. These structures function in bacterial competition by making pores in the membrane of their competitors. The PTLBs identified in Pseudomonas aeruginosa are known as R-type and F-type pyocins, which have a narrow spectrum of action. Their specificity is determined by the tail fiber and is closely related to the lipopolysaccharide type of the target competitor strain. In this study, the genome sequences of 32 clinical of P. aeruginosa clinical isolates were analysed to investigate the presence of R-type and F-type pyocins, and one was detected in all strains tested. The pyocins were classified into 4 groups on the basis of the tail fiber and also the homology, phylogeny and structure of the cluster components. A relationship was established between these groups and the sequence type and serotype of the strain of origin and finally the killing spectrum of the representative pyocins was determined showing a variable range of activity between 0 and 37.5%. The findings showed that these pyocins could potentially be used for typing of P. aeruginosa clinical isolates, on the basis of their genomic sequence and cluster structure, and also as antimicrobial agents.
Assuntos
Anti-Infecciosos , Bacteriocinas , Bacteriófagos , Bacteriocinas/genética , Bacteriocinas/farmacologia , Piocinas/farmacologia , Piocinas/química , Pseudomonas aeruginosa , Proteômica , Bacteriófagos/genéticaRESUMO
Phages and bacteria have acquired resistance mechanisms for protection. In this context, the aims of the present study were to analyze the proteins isolated from 21 novel lytic phages of Klebsiella pneumoniae in search of defense mechanisms against bacteria and also to determine the infective capacity of the phages. A proteomic study was also conducted to investigate the defense mechanisms of two clinical isolates of K. pneumoniae infected by phages. For this purpose, the 21 lytic phages were sequenced and de novo assembled. The host range was determined in a collection of 47 clinical isolates of K. pneumoniae, revealing the variable infective capacity of the phages. Genome sequencing showed that all of the phages were lytic phages belonging to the order Caudovirales. Phage sequence analysis revealed that the proteins were organized in functional modules within the genome. Although most of the proteins have unknown functions, multiple proteins were associated with defense mechanisms against bacteria, including the restriction-modification system, the toxin-antitoxin system, evasion of DNA degradation, blocking of host restriction and modification, the orphan CRISPR-Cas system, and the anti-CRISPR system. Proteomic study of the phage-host interactions (i.e., between isolates K3574 and K3320, which have intact CRISPR-Cas systems, and phages vB_KpnS-VAC35 and vB_KpnM-VAC36, respectively) revealed the presence of several defense mechanisms against phage infection (prophage, defense/virulence/resistance, oxidative stress and plasmid proteins) in the bacteria, and of the Acr candidate (anti-CRISPR protein) in the phages. IMPORTANCE Researchers, including microbiologists and infectious disease specialists, require more knowledge about the interactions between phages and their bacterial hosts and about their defense mechanisms. In this study, we analyzed the molecular mechanisms of viral and bacterial defense in phages infecting clinical isolates of K. pneumoniae. Viral defense mechanisms included restriction-modification system evasion, the toxin-antitoxin (TA) system, DNA degradation evasion, blocking of host restriction and modification, and resistance to the abortive infection system, anti-CRISPR and CRISPR-Cas systems. Regarding bacterial defense mechanisms, proteomic analysis revealed expression of proteins involved in the prophage (FtsH protease modulator), plasmid (cupin phosphomannose isomerase protein), defense/virulence/resistance (porins, efflux pumps, lipopolysaccharide, pilus elements, quorum network proteins, TA systems, and methyltransferases), oxidative stress mechanisms, and Acr candidates (anti-CRISPR protein). The findings reveal some important molecular mechanisms involved in the phage-host bacterial interactions; however, further study in this field is required to improve the efficacy of phage therapy.
RESUMO
Clinical case of a patient with a Pseudomonas aeruginosa multidrug-resistant prosthetic vascular graft infection which was treated with a cocktail of phages (PT07, 14/01, and PNM) in combination with ceftazidime-avibactam (CZA). After the application of the phage treatment and in absence of antimicrobial therapy, a new P. aeruginosa bloodstream infection (BSI) with a septic residual limb metastasis occurred, now involving a wild-type strain being susceptible to ß-lactams and quinolones. Clinical strains were analyzed by microbiology and whole genome sequencing techniques. In relation with phage administration, the clinical isolates of P. aeruginosa before phage therapy (HE2011471) and post phage therapy (HE2105886) showed a clonal relationship but with important genomic changes which could be involved in the resistance to this therapy. Finally, phenotypic studies showed a decrease in Minimum Inhibitory Concentration (MIC) to ß-lactams and quinolones as well as an increase of the biofilm production and phage resistant mutants in the clinical isolate of P. aeruginosa post phage therapy.
RESUMO
Carbapenem-resistant pathogens have been recognized as a health concern as they are both difficult to treat and detect in clinical microbiology laboratories. Researchers are making great efforts to develop highly specific, sensitive, accurate, and rapid diagnostic techniques, required to prevent the spread of these microorganisms and improve the prognosis of patients. In this context, CRISPR-Cas systems are proposed as promising tools for the development of diagnostic methods due to their high specificity; the Cas13a endonuclease can discriminate single nucleotide changes and displays collateral cleavage activity against single-stranded RNA molecules when activated. This technology is usually combined with isothermal pre-amplification reactions in order to increase its sensitivity. We have developed a new LAMP-CRISPR-Cas13a-based assay for the detection of OXA-48 and GES carbapenemases in clinical samples without the need for nucleic acid purification and concentration. To evaluate the assay, we used 68 OXA-48-like-producing Klebsiella pneumoniae clinical isolates as well as 64 Enterobacter cloacae complex GES-6, 14 Pseudomonas aeruginosa GES-5, 9 Serratia marcescens GES-6, 5 P. aeruginosa GES-6, and 3 P. aeruginosa (GES-15, GES-27, and GES-40) and 1 K. pneumoniae GES-2 isolates. The assay, which takes less than 2 h and costs approximately 10 per reaction, exhibited 100% specificity and sensitivity (99% confidence interval [CI]) for both OXA-48 and all GES carbapenemases. IMPORTANCE Carbapenems are one of the last-resort antibiotics for defense against multidrug-resistant pathogens. Multiple nucleic acid amplification methods, including multiplex PCR, multiplex loop-mediated isothermal amplification (LAMP) and multiplex RPAs, can achieve rapid, accurate, and simultaneous detection of several resistance genes to carbapenems in a single reaction. However, these assays need thermal cycling steps and specialized instruments, giving them limited application in the field. In this work, we adapted with high specificity and sensitivity values, a new LAMP CRISPR-Cas13a-based assay for the detection of OXA-48 and GES carbapenemases in clinical samples without the need for RNA extraction.
Assuntos
Proteínas de Bactérias , Ácidos Nucleicos , Humanos , Proteínas de Bactérias/genética , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Reação em Cadeia da Polimerase Multiplex/métodosRESUMO
Background: Bacteriophage therapy is becoming part of mainstream Western medicine since antibiotics of clinical use tend to fail. It involves applying lytic bacteriophages that self-replicate and induce cell lysis, thus killing their hosts. Nevertheless, bacterial killing promotes the selection of resistant clones which sometimes may exhibit a decrease in bacterial virulence or antibiotic resistance. Methods: In this work, we studied the Pseudomonas aeruginosa lytic phage φDCL-PA6 and its variant φDCL-PA6α. Additionally, we characterized and evaluated the production of virulence factors and the virulence in a Galleria mellonella model of resistant mutants against each phage for PA14 and two clinical strains. Results: Phage φDCL-PA6α differs from the original by only two amino acids: one in the baseplate wedge subunit and another in the tail fiber protein. According to genomic data and cross-resistance experiments, these changes may promote the change of the phage receptor from the O-antigen to the core lipopolysaccharide. Interestingly, the host range of the two phages differs as determined against the Pseudomonas aeruginosa reference strains PA14 and PAO1 and against nine multidrug-resistant isolates from ventilator associated pneumonia. Conclusions: We show as well that phage resistance impacts virulence factor production. Specifically, phage resistance led to decreased biofilm formation, swarming, and type III secretion; therefore, the virulence towards Galleria mellonella was dramatically attenuated. Furthermore, antibiotic resistance decreased for one clinical strain. Our study highlights important potential advantages of phage therapy's evolutionary impact that may be exploited to generate robust therapy schemes.
Assuntos
Bacteriófagos , Mariposas , Terapia por Fagos , Fagos de Pseudomonas , Animais , Virulência , Pseudomonas aeruginosa , Fagos de Pseudomonas/genética , Fatores de Virulência/genética , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologiaRESUMO
To enable the utilization of seasonal biomasses in e.g., farm-scale biogas plants, the process should be flexible and ensure stable gas production. However, information about microbial community dynamics in long-term co-digestion with versatile co-feedstocks is lacking. This study investigated the effects of co-feedstock changes on the performance and evolution of microbial consortia during 428-day anaerobic digestion of cow slurry. Co-feedstocks consisted of hydrocarbon-, protein- and lipid-rich materials. A high throughput 16S ribosomal RNA gene sequencing was used to analyze the taxonomic profile of microbial communities. Due to the low loading rate, the changes were subtle in bacteria, but a shift on archaeal genera in response to different and changing feedstock compositions was observed. Despite drastic changes in co-feedstock composition, stable and flexible anaerobic digestion with relatively constant core microbiome can be achieved with cautious operation of the process.
Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Reatores Biológicos/microbiologia , Microbiota/genética , Bactérias/genética , Archaea/genética , Biocombustíveis , RNA Ribossômico 16S/genética , MetanoRESUMO
At the end of 2019, a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused a pandemic that persists to date and has resulted in more than 6.2 million deaths. In the last couple of years, researchers have made great efforts to develop a diagnostic technique that maintains high levels of sensitivity and specificity, since an accurate and early diagnosis is required to minimize the prevalence of SARS-CoV-2 infection. In this context, CRISPR-Cas systems are proposed as promising tools for development as diagnostic techniques due to their high specificity, highlighting that Cas13 endonuclease discriminates single nucleotide changes and displays collateral activity against single-stranded RNA molecules. With the aim of improving the sensitivity of diagnosis, this technology is usually combined with isothermal preamplification reactions (SHERLOCK, DETECTR). Based on this, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP)-CRISPR-Cas13a method for SARS-CoV-2 virus detection in nasopharyngeal samples without using RNA extraction that exhibits 100% specificity and 83% sensitivity, as well as a positive predictive value (PPV) of 100% and negative predictive values (NPVs) of 100%, 81%, 79.1%, and 66.7% for cycle threshold (CT) values of <20, 20 to 30, >30 and overall, respectively. IMPORTANCE The coronavirus disease 2019 (COVID-19) crisis has driven the development of innovative molecular diagnosis methods, including CRISPR-Cas technology. In this work, we performed a protocol, working with RNA extraction kit-free samples and using RT-LAMP-CRISPR-Cas13a technology; our results place this method at the forefront of rapid and specific diagnostic methods for COVID-19 due to the high specificity (100%), sensitivity (83%), PPVs (100%), and NPVs (81% for high viral loads) obtained with clinical samples.