Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(4)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425974

RESUMO

The conversion of electrical current into methane (electromethanogenesis) by microbes represents one of the most promising applications of bioelectrochemical systems (BES). Electromethanogenesis provides a novel approach to waste treatment, carbon dioxide fixation and renewable energy storage into a chemically stable compound, such as methane. This has become an important area of research since it was first described, attracting different research groups worldwide. Basics of the process such as microorganisms involved and main reactions are now much better understood, and recent advances in BES configuration and electrode materials in lab-scale enhance the interest in this technology. However, there are still some gaps that need to be filled to move towards its application. Side reactions or scaling-up issues are clearly among the main challenges that need to be overcome to its further development. This review summarizes the recent advances made in the field of electromethanogenesis to address the main future challenges and opportunities of this novel process. In addition, the present fundamental knowledge is critically reviewed and some insights are provided to identify potential niche applications and help researchers to overcome current technological boundaries.


Assuntos
Fontes de Energia Bioelétrica , Biotecnologia , Eletrólise/métodos , Metano/biossíntese , Pesquisa , Eletroquímica/métodos , Eletrodos , Microbiologia Industrial/métodos , Energia Renovável , Gerenciamento de Resíduos/métodos
2.
Biotechnol Adv ; 59: 107950, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35364226

RESUMO

The market of biobased products obtainable via fermentation processes has steadily increased over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC), whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is still hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a means to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying EF are still largely unknown. This review provides a comprehensive overview of recent literature studies including both AEF and CEF examples using pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.


Assuntos
Eletricidade , Eletrodos , Fermentação
3.
PLoS One ; 14(4): e0215029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973887

RESUMO

Electromethanogenesis is the bioreduction of carbon dioxide (CO2) to methane (CH4) utilizing an electrode as electron donor. Some studies have reported the active participation of Methanobacterium sp. in electron capturing, although no conclusive results are available. In this study, we aimed at determining short-time changes in the expression levels of [NiFe]-hydrogenases (Eha, Ehb and Mvh), heterodisulfide reductase (Hdr), coenzyme F420-reducing [NiFe]-hydrogenase (Frh), and hydrogenase maturation protein (HypD), according to the electron flow in independently connected carbon cloth cathodes poised at- 800 mV vs. standard hydrogen electrode (SHE). Amplicon massive sequencing of cathode biofilm confirmed the presence of an enriched Methanobacterium sp. population (>70% of sequence reads), which remained in an active state (78% of cDNA reads), tagging this archaeon as the main methane producer in the system. Quantitative RT-PCR determinations of ehaB, ehbL, mvhA, hdrA, frhA, and hypD genes resulted in only slight (up to 1.5 fold) changes for four out of six genes analyzed when cells were exposed to open (disconnected) or closed (connected) electric circuit events. The presented results suggested that suspected mechanisms for electron capturing were not regulated at the transcriptional level in Methanobacterium sp. for short time exposures of the cells to connected-disconnected circuits. Additional tests are needed in order to confirm proteins that participate in electron capturing in Methanobacterium sp.


Assuntos
Proteínas Arqueais/metabolismo , Fontes de Energia Bioelétrica , Eletrodos , Hidrogenase/metabolismo , Metano/metabolismo , Methanobacterium/enzimologia , Proteínas Arqueais/genética , Dióxido de Carbono , Hidrogenase/genética , Methanobacterium/genética , Methanobacterium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA