Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38869584

RESUMO

This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50-600 nm, comprising spherical particles sized between 19 to 50 nm. These particles exhibited partial crystallization, indicated by peaks at 2θ = 25.37, 37.62, 41.18, 49.41, 61.45, and 65.79°, characteristic of MnO2 with a tetragonal crystal lattice with a I4/m spatial group. Quantum chemical modelling showed that the stabilization process of MnO2 NPs with cocamidopropyl betaine is energetically advantageous (∆E > 1299.000 kcal/mol) and chemically stable, as confirmed by the positive chemical hardness values (0.023 ≤ η ≤ 0.053 eV). It was revealed that the interaction between the MnO2 molecule and cocamidopropyl betaine, facilitated by a secondary amino group (NH), is the most probable scenario. This ascertain is supported by the values of the difference in total energy (∆E = 1299.519 kcal/mol) and chemical hardness (η = 0.053 eV). These findings were further confirmed using FTIR spectroscopy. The effect of MnO2 NPs at various concentrations on the germination of pea seeds was found to be nonlinear and ambiguous. The investigation revealed that MnO2 NPs at a concentration of 0.1 mg/L resulted in the highest germination energy (91.25%), germinability (95.60%), and lengths of roots and seedlings among all experimental samples. However, an increase in the concentration of preparation led to a slight growth suppression (1-10 mg/L) and the pronounced inhibition of seedling and root development (100 mg/L). The analysis of antioxidant indicators and phytochemicals in pea seedlings indicated that only 100 mg/L MnO2 NPs have a negative effect on the content of soluble sugars, chlorophyll a/b, carotenoids, and phenols. Conversely, lower concentrations showed a stimulating effect on photosynthesis indicators. Nevertheless, MnO2 NPs at all concentrations generally decreased the antioxidant potential of pea seedlings, except for the ABTS parameter. Pea seedlings showed a notable capacity to absorb Mn, reaching levels of 586.5 µg/L at 10 mg/L and 892.6 µg/L at 100 mg/L MnO2 NPs, surpassing the toxic level for peas according to scientific literature. However, the most important result was the observed growth-stimulating activity at 0.1 mg/L MnO2 NPs stabilized with cocamidopropyl betaine, suggesting a promising avenue for further research.

2.
Nanomaterials (Basel) ; 13(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177122

RESUMO

The aim of this research was to study the effect of MnxOy nanoparticles stabilized with L-methionine on the morphofunctional characteristics of the barley (Hordeum vulgare L.) crop. MnxOy nanoparticles stabilized with L-methionine were synthesized using potassium permanganate and L-methionine. We established that MnxOy nanoparticles have a diameter of 15 to 30 nm. According to quantum chemical modeling and IR spectroscopy, it is shown that the interaction of MnxOy nanoparticles with L-methionine occurs through the amino group. It is found that MnxOy nanoparticles stabilized with L-methionine have positive effects on the roots and seedling length, as well as the seed germination energy. The effect of MnxOy nanoparticles on Hordeum vulgare L. seeds is nonlinear. At a concentration of 0.05 mg/mL, there was a statistically significant increase in the length of seedlings by 68% compared to the control group. We found that the root lengths of samples treated with MnxOy nanoparticle sols with a concentration of 0.05 mg/mL were 62.8%, 32.7%, and 158.9% higher compared to samples treated with L-methionine, KMnO4, and the control sample, respectively. We have shown that at a concentration of 0.05 mg/mL, the germination energy of seeds increases by 50.0% compared to the control sample, by 10.0% compared to the samples treated with L-methionine, and by 13.8% compared to the samples treated with KMnO4.

3.
Gels ; 9(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36661823

RESUMO

A method for the synthesis of ZnO nanoparticles (ZnO NPs) gels was developed. ZnO NPs were obtained through a sol-gel method with zinc acetate usage as a precursor. Optimization of the method of synthesis of ZnO NPs gel has been carried out. It was observed that the most stable ZnO NPs gels are formed at room temperature, pH = 8 and molar concentration of zinc C(Zn2+) = 0.05-0.2 M. It was shown that the addition of polysaccharide significantly affects the rheological properties and microstructure of ZnO NPs gels. We found that the optimal polysaccharide for the synthesis of ZnO NPs gels is hydroxyethyl cellulose. It is shown that the microstructure of a gel of ZnO NPs stabilized with hydroxyethyl cellulose is represented by irregularly shaped particles that are assembled into aggregates, with sizes ranging from 150 to 1400 nm. A significant hysteresis region is observed in a gel of ZnO NPs stabilized with hydroxyethyl cellulose. The process of interaction of ZnO NPs with polysaccharides was investigated. It was shown that the interaction of ZnO NPs with polysaccharides occurs through a charged hydroxyl group. In the experiment, a sample of a gel of ZnO NPs modified with hydroxyethyl cellulose was tested. It was shown that the gel of ZnO NPs modified with hydroxyethyl cellulose has a pronounced regenerative effect on burn wounds, which is significantly higher than that of the control group and the group treated with a gel of ZnO microparticles (MPs) and hydroxyethyl cellulose. It is also shown that the rate of healing of burn wounds in animals treated with gel of ZnO nanoparticles with hydroxyethyl cellulose (group 3) is 16.23% higher than in animals treated with gel of ZnO microparticles with hydroxyethyl cellulose (group 2), and 24.33% higher than in the control group treated with hydroxyethyl cellulose. The average rate of healing of burn wounds for the entire experimental period in experimental animals of group 3 is 1.26 and 1.54 times higher than in animals of group 2 and control group, respectively. An experimental study of a gel of ZnO NPs modified with hydroxyethyl cellulose has shown the effectiveness of its use in modeling the healing of skin wounds through primary tension.

4.
Micromachines (Basel) ; 14(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838132

RESUMO

This article presents the results of the synthesis of Se NPs stabilized by a quaternary ammonium compound-catamine AB. Se NPs were obtained by chemical reduction in an aqueous medium. In the first stage of this study, the method of synthesis of Se NPs was optimized by a multifactorial experiment. The radius of the obtained samples was studied by dynamic light scattering, and the electrokinetic potential was studied using acoustic and electroacoustic spectrometry. Subsequently, the samples were studied by transmission electron microscopy, and the analysis of the data showed that a bimodal distribution is observed in negatively charged particles, where one fraction is represented by spheres with a diameter of 45 nm, and the second by 1 to 10 nm. In turn, positive Se NPs have a diameter of about 70 nm. In the next stage, the influence of the active acidity of the medium on the stability of Se NPs was studied. An analysis of the obtained data showed that both sols of Se NPs exhibit aggregative stability in the pH range from 2 to 6, while an increase in pH to an alkaline medium is accompanied by a loss of particle stability. Next, we studied the effect of ionic strength on the aggregative stability of Se NPs sols. It was found that negatively charged ions have a significant effect on the particle size of the positive sol of Se NPs, while the particle size of the negative sol is affected by positively charged ions.

5.
Nanomaterials (Basel) ; 13(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133025

RESUMO

Selenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium. The influence of the concentration of precursors and synthesis conditions on the size of Se NPs and the process of micelle formation was established. Transmission electron microscopy was used to study the morphology of Se NPs. The influence of the pH of the medium and the concentration of ions in the sol on the stability of Se micelles was studied. According to the results of this study, the concentration of positively charged ions has a greater effect on the particle size in the positive Se NPs sol than in the negative Se NPs sol. The potential antibacterial and fungicidal properties of the samples were studied on Escherichia coli, Micrococcus luteus and Mucor. Concentrations of Se NPs stabilized with CTAC with potential bactericidal and fungicidal effects were discovered. Considering the revealed potential antimicrobial activity, the synthesized Se NPs-CTAC molecular complex can be further studied and applied in the development of veterinary drugs, pharmaceuticals, and cosmetics.

6.
Micromachines (Basel) ; 14(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36837945

RESUMO

This work presents the development of a method for the synthesis of calcium silicate nanoparticles stabilized with essential amino acids. CaSiO3 nanoparticles were obtained through chemical precipitation. In the first stage, the optimal calcium-containing precursor was determined. The samples were examined using scanning electron microscopy. It was found that Ca(CH3COO)2 was the optimal calcium-containing precursor. Then, the phase composition of calcium silicate was studied using X-ray phase analysis. The results showed the presence of high-intensity bands in the diffractogram, which characterized the phase of the nanosized CaSiO3-wollastonite. In the next stage, the influence of the type of amino acid on the microstructure of calcium silicate was studied. The amnio acids studied were valine, L-leucine, L-isoleucine, L-methionine, L-threonine, L-lysine, L-phenylalanine, and L-tryptophan. The analysis of the SEM micrographs showed that the addition of amino acids did not significantly affect the morphology of the CaSiO3 samples. The surface of the CaSiO3 samples, both without a stabilizer and with amino acids, was represented by irregularly shaped aggregates consisting of nanoparticles with a diameter of 50-400 nm. Further, in order to determine the optimal amino acid to use to stabilize nanoparticles, computerized quantum chemical modeling was carried out. Analysis of the data obtained showed that the most energetically favorable interaction was the CaSiO3-L-methionine configuration, where the interaction occurs through the amino group of the amino acid; the energy value of which was -2058.497 kcal/mol. To confirm the simulation results, the samples were examined using IR spectroscopy. An analysis of the results showed that the interaction of calcium silicate with L-methionine occurs via the formation of a bond through the NH3+ group of the amino acid.

7.
Sci Rep ; 12(1): 21975, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539549

RESUMO

In this work, selenium nanoparticles (Se NPs) stabilized with cocamidopropyl betaine were synthesized for the first time. It was observed that Se NPs synthesized in excess of selenic acid had a negative charge with ζ-potential of -21.86 mV, and in excess of cocamidopropyl betaine-a positive charge with ξ = + 22.71 mV. The resulting Se NPs with positive and negative charges had a spherical shape with an average size of about 20-30 nm and 40-50 nm, respectively. According to the data of TEM, HAADF-TEM using EDS, IR spectroscopy and quantum chemical modeling, positively charged selenium nanoparticles have a cocamidopropylbetaine shell while the potential- forming layer of negatively charged selenium nanoparticles is formed by SeO32- ions. The influence of various ions on the sol stability of Se NPs showed that SO42- and PO43- ions had an effect on the positive Se NPs, and Ba2+ and Fe3+ ions had an effect on negative Se NPs, which corresponded with the Schulze-Hardy rule. The mechanism of coagulating action of various ions on positive and negative Se NPs was also presented. Also, influence of the active acidity of the medium on the stability of Se NPs solutions was investigated. Positive and negative sols of Se NPs had high levels of stability in the considered range of active acidity of the medium in the range of 1.21-11.98. Stability of synthesized Se NPs stability has been confirmed in real system (liquid soap). An experiment with the addition of Se NPs stabilized with cocamidopropyl betaine to liquid soap showed that the particles of dispersed phases retain their initial distributions, which revealed the stability of synthesized Se NPs.


Assuntos
Nanopartículas , Selênio , Selênio/química , Sabões , Nanopartículas/química , Betaína
8.
Micromachines (Basel) ; 13(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888922

RESUMO

In this work, we obtained silver nanoparticles stabilized with polyvinylpyrrolidone, ranging in size from 70 to 110 nm, which exhibits good crystallinity and anisotropic structure. For the first time, we studied the influence of the molar ratio of silver between silver and peroxide on the oxidation process of the nanoparticles and determined the regularities of this process by analyzing changes in absorption spectra. Our results showed that at molar ratios of Ag:H2O2 = 1:1 and 1:5, dependences of changes in the intensity, position and half-width of the absorption band of the plasmon resonance are rectilinear. In vivo studies of silver nanoparticles have shown that silver nanoparticles belong to the toxicity class III (moderately hazardous substance) and to the third group according to the degree of accumulation. We established that silver nanoparticles and oxidized silver nanoparticles form a uniform layer on the surface of the suture material. We found that the use of the suture material with silver nanoparticles and oxidized silver nanoparticles does not cause allergic reactions in the organisms of laboratory animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA