Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur Heart J ; 35(22): 1486-95, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24419806

RESUMO

AIMS: To provide a comprehensive histopathological validation of cardiac magnetic resonance (CMR) and endocardial voltage mapping of acute and chronic atrial ablation injury. METHODS AND RESULTS: 16 pigs underwent pre-ablation T2-weighted (T2W) and late gadolinium enhancement (LGE) CMR and high-density voltage mapping of the right atrium (RA) and both were repeated after intercaval linear radiofrequency ablation. Eight pigs were sacrificed following the procedure for pathological examination. A further eight pigs were recovered for 8 weeks, before chronic CMR, repeat RA voltage mapping and pathological examination. Signal intensity (SI) thresholds from 0 to 15 SD above a reference SI were used to segment the RA in CMR images and segmentations compared with real lesion volumes. The SI thresholds that best approximated histological volumes were 2.3 SD for LGE post-ablation, 14.5 SD for T2W post-ablation and 3.3 SD for LGE chronically. T2-weighted chronically always underestimated lesion volume. Acute histology showed transmural injury with coagulative necrosis. Chronic histology showed transmural fibrous scar. The mean voltage at the centre of the ablation line was 3.3 mV pre-ablation, 0.6 mV immediately post-ablation, and 0.3 mV chronically. CONCLUSION: This study presents the first histopathological validation of CMR and endocardial voltage mapping to define acute and chronic atrial ablation injury, including SI thresholds that best match histological lesion volumes. An understanding of these thresholds may allow a more informed assessment of the underlying atrial substrate immediately after ablation and before repeat catheter ablation for atrial arrhythmias.


Assuntos
Ablação por Cateter/efeitos adversos , Eletrodiagnóstico/métodos , Traumatismos Cardíacos/patologia , Angiografia por Ressonância Magnética/métodos , Doença Aguda , Animais , Técnicas de Imagem Cardíaca/métodos , Doença Crônica , Meios de Contraste , Feminino , Átrios do Coração/patologia , Compostos Organometálicos , Suínos , Porco Miniatura
2.
J Am Coll Cardiol ; 74(9): 1220-1232, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31466620

RESUMO

BACKGROUND: Arterial 18fluorodeoxyglucose (FDG) positron emission tomography (PET) is considered a measure of atherosclerotic plaque macrophages and is used for quantification of disease activity in clinical trials, but the distribution profile of FDG across macrophages and other arterial cells has not been fully clarified. OBJECTIVES: The purpose of this study was to analyze FDG uptake in different arterial tissues and their contribution to PET signal in normal and atherosclerotic arteries. METHODS: Wild-type and D374Y-PCSK9 transgenic Yucatan minipigs were fed a high-fat, high-cholesterol diet to induce atherosclerosis and subjected to a clinical FDG-PET and computed tomography scan protocol. Volumes of arterial media, intima/lesion, macrophage-rich, and hypoxic tissues were measured in serial histological sections. Distributions of FDG in macrophages and other arterial tissues were quantified using modeling of the in vivo PET signal. In separate transgenic minipigs, the intra-arterial localization of FDG was determined directly by autoradiography. RESULTS: Arterial FDG-PET signal appearance and intensity were similar to human imaging. The modeling approach showed high accuracy in describing the FDG-PET signal and revealed comparable FDG accumulation in macrophages and other arterial tissues, including medial smooth muscle cells. These findings were verified directly by autoradiography of normal and atherosclerotic arteries. CONCLUSIONS: FDG is taken up comparably in macrophage-rich and -poor arterial tissues in minipigs. This offers a mechanistic explanation to a growing number of observations in clinical imaging studies that have been difficult to reconcile with macrophage-selective FDG uptake.


Assuntos
Artérias/diagnóstico por imagem , Artérias/metabolismo , Aterosclerose/metabolismo , Fluordesoxiglucose F18/farmacocinética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Animais , Feminino , Masculino , Suínos , Porco Miniatura , Distribuição Tecidual
3.
JACC Clin Electrophysiol ; 3(2): 89-103, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-29759398

RESUMO

OBJECTIVES: This study sought to develop an actively tracked cardiac magnetic resonance-guided electrophysiology (CMR-EP) system and perform first-in-human clinical ablation procedures. BACKGROUND: CMR-EP offers high-resolution anatomy, arrhythmia substrate, and ablation lesion visualization in the absence of ionizing radiation. Implementation of active tracking, where catheter position is continuously transmitted in a manner analogous to electroanatomic mapping (EAM), is crucial for CMR-EP to take the step from theoretical technology to practical clinical tool. METHODS: The setup integrated a clinical 1.5-T scanner, an EP recording and ablation system, and a real-time image guidance platform with components undergoing ex vivo validation. The full system was assessed using a preclinical study (5 pigs), including mapping and ablation with histological validation. For the clinical study, 10 human subjects with typical atrial flutter (age 62 ± 15 years) underwent MR-guided cavotricuspid isthmus (CTI) ablation. RESULTS: The components of the CMR-EP system were safe (magnetically induced torque, radiofrequency heating) and effective in the CMR environment (location precision). Targeted radiofrequency ablation was performed in all animals and 9 (90%) humans. Seven patients had CTI ablation completed using CMR guidance alone; 2 patients required completion under fluoroscopy, with 2 late flutter recurrences. Acute and chronic CMR imaging demonstrated efficacious lesion formation, verified with histology in animals. Anatomic shape of the CTI was an independent predictor of procedural success. CONCLUSIONS: CMR-EP using active catheter tracking is safe and feasible. The CMR-EP setup provides an effective workflow and has the potential to change the way in which ablation procedures may be performed.


Assuntos
Flutter Atrial/patologia , Flutter Atrial/cirurgia , Ablação por Cateter/métodos , Angiografia por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Cicatriz/patologia , Técnicas Eletrofisiológicas Cardíacas/métodos , Estudos de Viabilidade , Feminino , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Cirurgia Assistida por Computador/métodos , Sus scrofa , Suínos , Resultado do Tratamento , Adulto Jovem
4.
Artery Res ; 8(3): 98-109, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25187852

RESUMO

BACKGROUND: Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. Studies have identified WIA-derived indices that are closely correlated with several disease processes and predictive of functional recovery following myocardial infarction. The cWIA clinical application has, however, been limited by technical challenges including a lack of standardization across different studies and the derived indices' sensitivity to the processing parameters. Specifically, a critical step in WIA is the noise removal for evaluation of derivatives of the acquired signals, typically performed by applying a Savitzky-Golay filter, to reduce the high frequency acquisition noise. METHODS: The impact of the filter parameter selection on cWIA output, and on the derived clinical metrics (integral areas and peaks of the major waves), is first analysed. The sensitivity analysis is performed either by using the filter as a differentiator to calculate the signals' time derivative or by applying the filter to smooth the ensemble-averaged waveforms. Furthermore, the power-spectrum of the ensemble-averaged waveforms contains little high-frequency components, which motivated us to propose an alternative approach to compute the time derivatives of the acquired waveforms using a central finite difference scheme. RESULTS AND CONCLUSION: The cWIA output and consequently the derived clinical metrics are significantly affected by the filter parameters, irrespective of its use as a smoothing filter or a differentiator. The proposed approach is parameter-free and, when applied to the 10 in-vivo human datasets and the 50 in-vivo animal datasets, enhances the cWIA robustness by significantly reducing the outcome variability (by 60%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA