Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Theor Appl Genet ; 137(5): 106, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622441

RESUMO

KEY MESSAGE: A new resistance locus acting against the potato cyst nematode Globodera pallida was mapped to chromosome VI in the diploid wild potato species Solanum spegazzinii CPC 7195. The potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis are economically important potato pests in almost all regions where potato is grown. One important management strategy involves deployment through introgression breeding into modern cultivars of new sources of naturally occurring resistance from wild potato species. We describe a new source of resistance to G. pallida from wild potato germplasm. The diploid species Solanum spegazzinii Bitter accession CPC 7195 shows resistance to G. pallida pathotypes Pa1 and Pa2/3. A cross and first backcross of S. spegazzinii with Solanum tuberosum Group Phureja cultivar Mayan Gold were performed, and the level of resistance to G. pallida Pa2/3 was determined in progeny clones. Bulk-segregant analysis (BSA) using generic mapping enrichment sequencing (GenSeq) and genotyping-by-sequencing were performed to identify single-nucleotide polymorphisms (SNPs) that are genetically linked to the resistance, using S. tuberosum Group Phureja clone DM1-3 516 R44 as a reference genome. These SNPs were converted into allele-specific PCR assays, and the resistance was mapped to an interval of roughly 118 kb on chromosome VI. This newly identified resistance, which we call Gpa VIlspg, can be used in future efforts to produce modern cultivars with enhanced and broad-spectrum resistances to the major pests and pathogens of potato.


Assuntos
Solanum tuberosum , Solanum , Tylenchoidea , Animais , Solanum tuberosum/genética , Solanum/genética , Doenças das Plantas/genética , Melhoramento Vegetal
2.
J Theor Biol ; 522: 110701, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794290

RESUMO

Potato cyst nematodes (PCN) are responsible for large losses in potato yields in many of the world's potato-growing regions. As soil temperatures increase due to climate change, there is potential for faster growth rates of PCN, allowing development of multiple generations in a growing season. We develop a process-based temperature-dependent model representing the life cycle of Globodera pallida, comprising juvenile, adult and cyst/diapause stages. To incorporate variability in the amount of time spent in each stage caused by genetic/environmental variation, the model is based on a mix of ordinary differential equations (ODEs) with sub-stages, and delay differential equations (DDEs). The effect of climate change is incorporated through the influence of soil temperature on the rate of development and survival in the hatching and juvenile stages. The level of the plant resistance to PCN is incorporated via the proportion of juveniles which become adults. After comparing the model with field data we run simulations to explore the effects of temperature and resistance on PCN populations. We find that with higher temperatures and longer growing seasons multiple generations of PCN can develop within a season, provided any required diapause period is short. Despite this, we show that growing resistant potatoes is a very effective control strategy and planting potatoes with even moderate levels of resistance can counter the effects of climate change.


Assuntos
Solanum tuberosum , Tylenchoidea , Animais , Dinâmica Populacional , Solo , Temperatura
3.
Theor Appl Genet ; 132(4): 1283-1294, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30666393

RESUMO

KEY MESSAGE: The nematode resistance gene H2 was mapped to the distal end of chromosome 5 in tetraploid potato. The H2 resistance gene, introduced into cultivated potatoes from the wild diploid species Solanum multidissectum, confers a high level of resistance to the Pa1 pathotype of the potato cyst nematode Globodera pallida. A cross between tetraploid H2-containing breeding clone P55/7 and susceptible potato variety Picasso yielded an F1 population that segregated approximately 1:1 for the resistance phenotype, which is consistent with a single dominant gene in a simplex configuration. Using genome reduction methodologies RenSeq and GenSeq, the segregating F1 population enabled the genetic characterisation of the resistance through a bulked segregant analysis. A diagnostic RenSeq analysis of the parents confirmed that the resistance in P55/7 cannot be explained by previously characterised resistance genes. Only the variety Picasso contained functionally characterised disease resistance genes Rpi-R1, Rpi-R3a, Rpi-R3b variant, Gpa2 and Rx, which was independently confirmed through effector vacuum infiltration assays. RenSeq and GenSeq independently identified sequence polymorphisms linked to the H2 resistance on the top end of potato chromosome 5. Allele-specific KASP markers further defined the locus containing the H2 gene to a 4.7 Mb interval on the distal short arm of potato chromosome 5 and to positions that correspond to 1.4 MB and 6.1 MB in the potato reference genome.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitologia , Tetraploidia , Tylenchoidea/patogenicidade , Animais , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genes Dominantes , Genes de Plantas , Loci Gênicos , Proteínas NLR/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único/genética , Solanum tuberosum/imunologia
4.
PLoS Biol ; 13(2): e1002061, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25668728

RESUMO

Small RNA pathways act at the front line of defence against transposable elements across the Eukaryota. In animals, Piwi interacting small RNAs (piRNAs) are a crucial arm of this defence. However, the evolutionary relationships among piRNAs and other small RNA pathways targeting transposable elements are poorly resolved. To address this question we sequenced small RNAs from multiple, diverse nematode species, producing the first phylum-wide analysis of how small RNA pathways evolve. Surprisingly, despite their prominence in Caenorhabditis elegans and closely related nematodes, piRNAs are absent in all other nematode lineages. We found that there are at least two evolutionarily distinct mechanisms that compensate for the absence of piRNAs, both involving RNA-dependent RNA polymerases (RdRPs). Whilst one pathway is unique to nematodes, the second involves Dicer-dependent RNA-directed DNA methylation, hitherto unknown in animals, and bears striking similarity to transposon-control mechanisms in fungi and plants. Our results highlight the rapid, context-dependent evolution of small RNA pathways and suggest piRNAs in animals may have replaced an ancient eukaryotic RNA-dependent RNA polymerase pathway to control transposable elements.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , MicroRNAs/genética , Nematoides/genética , Filogenia , RNA Interferente Pequeno/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Nematoides/classificação , Nematoides/imunologia , Nematoides/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
5.
Plant Dis ; 102(3): 519-526, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673493

RESUMO

Aphelenchoides besseyi and A. fujianensis have been frequently found in mixed populations associated with forage grass seed in Brazil. The morphological similarity between both species has previously led A. fujianensis to be erroneously identified as A. besseyi. A. besseyi is a quarantine pest in many countries that import Brazilian forage seed; however, there is no current evidence suggesting that A. fujianensis is a plant-parasitic species. Two real-time polymerase chain reaction (qPCR) diagnostics were developed to detect each species and an operational envelope was established. A set of primers and hydrolysis probes for each species was designed targeting the large subunit (LSU) region. To assess their specificity, primers and probes sets were tested with samples of nontarget Aphelenchoides and Paraphelenchus sp. also frequently associated with forage seed. Experiments using dilutions of purified plasmid standards underpinned the sensitivity of the qPCR assays, which detected as few as 10 copies of target nematode ribosomal DNA. Thus, the developed diagnostics were sufficiently sensitive to detect DNA extracted from a fragment of a single target nematode. There was a positive correlation between copy number of the target species and nematode abundance, suggesting the potential of this method for quantification. Evidence of intra-individual variability among cloned sequences of the LSU region in a single A. besseyi population is also reported.


Assuntos
Doenças das Plantas/parasitologia , Poaceae/parasitologia , Tylenchida/isolamento & purificação , Animais , Brasil , Primers do DNA/genética , DNA de Helmintos/genética , DNA Ribossômico/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/parasitologia , Sensibilidade e Especificidade , Fatores de Tempo , Tylenchida/genética
6.
BMC Genomics ; 17: 706, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27595608

RESUMO

BACKGROUND: The evolution of animal mitochondrial (mt) genomes has resulted in a highly conserved structure: a single compact circular chromosome approximately 14 to 20 kb long. Within the last two decades exceptions to this conserved structure, such as the division of the genome into multiple chromosomes, have been reported in a diverse set of metazoans. We report on the two circle multipartite mt genome of a newly described cyst nematode, Globodera ellingtonae. RESULTS: The G. ellingtonae mt genome was found to be comprised of two circles, each larger than any other multipartite circular mt chromosome yet reported, and both were larger than the single mt circle of the model nematode Caenorhabditis elegans. The genetic content of the genome was disproportionately divided between the two circles, although they shared a ~6.5 kb non-coding region. The 17.8 kb circle (mtDNA-I) contained ten protein-coding genes and two tRNA genes, whereas the 14.4 kb circle (mtDNA-II) contained two protein-coding genes, 20 tRNA genes and both rRNA genes. Perhaps correlated with this division of genetic content, the copy number of mtDNA-II was more than four-fold that of mtDNA-I in individual nematodes. The difference in copy number increased between second-stage and fourth-stage juveniles. CONCLUSIONS: The segregation of gene types to different mt circles in G. ellingtonae could provide benefit by localizing gene functional types to independent transcriptional units. This is the first report of both two-circle and several-circle mt genomes within a single genus. The differential copy number associated with this multipartite mt organization could provide a model system for deconstructing mechanisms regulating mtDNA copy number both in somatic cells and during germline development.


Assuntos
Dosagem de Genes , Genoma Mitocondrial , Nematoides/fisiologia , Animais , Ordem dos Genes , Tamanho do Genoma , Proteínas Mitocondriais/genética , Nematoides/genética , RNA de Transferência/genética
7.
Mol Ecol ; 24(23): 5842-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26607216

RESUMO

Distinct populations of the potato cyst nematode (PCN) Globodera pallida exist in the UK that differ in their ability to overcome various sources of resistance. An efficient method for distinguishing between populations would enable pathogen-informed cultivar choice in the field. Science and Advice for Scottish Agriculture (SASA) annually undertake national DNA diagnostic tests to determine the presence of PCN in potato seed and ware land by extracting DNA from soil floats. These DNA samples provide a unique resource for monitoring the distribution of PCN and further interrogation of the diversity within species. We identify a region of mitochondrial DNA descriptive of three main groups of G. pallida present in the UK and adopt a metagenetic approach to the sequencing and analysis of all SASA samples simultaneously. Using this approach, we describe the distribution of G. pallida mitotypes across Scotland with field-scale resolution. Most fields contain a single mitotype, one-fifth contain a mix of mitotypes, and less than 3% contain all three mitotypes. Within mixed fields, we were able to quantify the relative abundance of each mitotype across an order of magnitude. Local areas within mixed fields are dominated by certain mitotypes and indicate towards a complex underlying 'pathoscape'. Finally, we assess mitotype distribution at the level of the individual cyst and provide evidence of 'hybrids'. This study provides a method for accurate, quantitative and high-throughput typing of up to one thousand fields simultaneously, while revealing novel insights into the national genetic variability of an economically important plant parasite.


Assuntos
Variação Genética , Genética Populacional , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Animais , Código de Barras de DNA Taxonômico , DNA de Helmintos/genética , DNA Mitocondrial/genética , Dados de Sequência Molecular , Doenças das Plantas/parasitologia , Escócia , Solo
8.
BMC Genomics ; 15: 923, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25342461

RESUMO

BACKGROUND: The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. RESULTS: The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. CONCLUSION: This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.


Assuntos
Genômica , Proteínas de Helminto/genética , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/fisiologia , Processamento Alternativo , Animais , Feminino , Proteínas de Helminto/metabolismo , Espaço Intracelular/parasitologia , Estágios do Ciclo de Vida/genética , Masculino , Solanum tuberosum/citologia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/metabolismo
9.
Parasitology ; 140(4): 445-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23253858

RESUMO

The potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis are major pests of potatoes. The G. pallida (and G. rostochiensis) life cycle includes both diapause and quiescent stages. Nematodes in dormancy (diapause or quiescent) are adapted for long-term survival and are more resistant to nematicides. This study analysed the mechanisms underlying diapause and quiescence. The effects of several compounds (8Br-cGMP, oxotremorine and atropine) on the activation of hatching were studied. The measurements of some morphometric parameters in diapaused and quiescent eggs after exposure to PRD revealed differences in dorsal gland length, subventral gland length and dorsal gland nucleolus. In addition, the expression of 2 effectors (IVg9 and cellulase) was not induced in diapaused eggs in water or PRD, while expression was slightly induced in quiescent eggs. Finally, we performed a comparative study to identify orthologues of C. elegans diapause related genes in plant-parasitic nematodes (G. pallida, Meloidogyne incognita, M. hapla and Bursaphelenchus xylophilus). This analysis suggested that it was not possible to identify G. pallida orthologues of the majority of C. elegans genes involved in the control of dauer formation. All these data suggest that G. pallida may use different mechanisms to C. elegans in regulating the survival stage.


Assuntos
Regulação da Expressão Gênica , Estágios do Ciclo de Vida/fisiologia , Tylenchoidea/fisiologia , Animais , Atropina/farmacologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/genética , Agonistas Muscarínicos/farmacologia , Oxotremorina/farmacologia , Tylenchoidea/anatomia & histologia , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/genética , Água/química , Zigoto/efeitos dos fármacos , Zigoto/fisiologia
10.
Genetica ; 140(1-3): 19-29, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22576954

RESUMO

Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.


Assuntos
DNA Mitocondrial/genética , Recombinação Genética , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Animais , Sequência de Bases , Biodiversidade , Cruzamentos Genéticos , Feminino , Variação Genética , Genética Populacional , Genoma Mitocondrial/genética , Masculino , Dados de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido Nucleico , América do Sul , Tylenchoidea/classificação , Tylenchoidea/crescimento & desenvolvimento , Reino Unido
11.
Adv Appl Microbiol ; 81: 89-132, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22958528

RESUMO

Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.


Assuntos
Mudança Climática , Plantas , Biodiversidade , Clima , Ecossistema , Plantas/metabolismo , Solo
12.
J Nematol ; 44(1): 7-17, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23482966

RESUMO

Potato cyst nematodes cost the potato industry substantial financial losses annually. Through the use of molecular markers, the distribution and infestation routes of these nematodes can be better elucidated, permitting the development of more effective preventative methods. Here we assess the ability of three molecular markers to resolve multiple representatives of five Globodera pallida populations as monophyletic groups. Molecular markers included a region of the rbp-1 gene (an effector), a non-coding nuclear DNA region (the ITS region), and a novel marker for G. pallida, a ∼3.4 kb non-coding mitochondrial DNA (mtDNA) region. Multiple phylogenetic analysis methods were performed on the three DNA regions separately, and on a data set of these three regions combined. The analyses of the combined data set were similar to that of the sole mtDNA marker; resolving more populations as monophyletic groups, relative to that of the ITS region and rbp-1 gene region. This suggests that individual markers may be inadequate for distinguishing populations of G. pallida. The use of this new non-coding mtDNA marker may provide further insights into the historical distribution of G. pallida, as well as enable the development of more sensitive diagnostic methods.

13.
Genetica ; 139(11-12): 1509-19, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22555855

RESUMO

Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4 kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40 % of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.


Assuntos
DNA Mitocondrial , Nematoides/genética , Animais , Cruzamentos Genéticos , DNA Espaçador Ribossômico , Feminino , Masculino , Dados de Sequência Molecular
14.
Mol Plant Pathol ; 22(5): 495-507, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33709540

RESUMO

TAXONOMY: Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY: Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE: The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS: Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL: Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES: Genomic information for PCN is accessible through WormBase ParaSite.


Assuntos
Genoma Helmíntico/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Animais , Resistência à Doença/genética , Feminino , Genômica , Especificidade de Hospedeiro/genética , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Masculino , Doenças das Plantas/prevenção & controle , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Tylenchoidea/genética
15.
Front Plant Sci ; 12: 661194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841485

RESUMO

Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle-commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.

16.
Bioessays ; 30(3): 249-59, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18293363

RESUMO

This essay considers biotrophic cyst and root-knot nematodes in relation to their biology, host-parasite interactions and molecular genetics. These nematodes have to face the biological consequences of the physical constraints imposed by the soil environment in which they live while their hosts inhabit both above and below ground environments. The two groups of nematodes appear to have adopted radically different solutions to these problems with the result that one group is a host specialist and reproduces sexually while the other has an enormous host range and reproduces by mitotic parthenogenesis. We consider what is known about the modes of parasitism used by these nematodes and how it relates to their host range, including the surprising finding that parasitism genes in both nematode groups have been recruited from bacteria. The nuclear and mitochondrial genomes of these two nematode groups are very different and we consider how these findings relate to the biology of the organisms.


Assuntos
Interações Hospedeiro-Parasita , Nematoides/fisiologia , Simbiose , Animais , Evolução Biológica , Meio Ambiente , Feminino , Helmintos/anatomia & histologia , Helmintos/fisiologia , Masculino , Modelos Biológicos , Nematoides/anatomia & histologia , Filogenia , Solo
17.
Genes (Basel) ; 11(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260722

RESUMO

Although the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) Globodera pallida, the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, GpaV (from Solanum vernei) and H3 from S. tuberosum ssp. andigena CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry. However, the use of resistant cultivars may drive strong selection towards virulence, which allows the increase in frequency of virulent alleles in the population and therefore, the emergence of highly virulent nematode lineages. This study aimed to identify Avirulence (Avr) genes in G. pallida populations selected for virulence on the above resistance sources, and the genomic impact of selection processes on the nematode. The selection drive in the populations was found to be specific to their genetic background. At the genomic level, 11 genes were found that represent candidate Avr genes. Most of the variant calls determining selection were associated with H3-selected populations, while many of them seem to be organised in genomic islands facilitating selection evolution. These phenotypic and genomic findings combined with histological studies performed revealed potential mechanisms underlying selection in G. pallida.


Assuntos
Nematoides , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Animais , Resistência à Doença , Nematoides/genética , Nematoides/patogenicidade , Virulência
18.
Front Plant Sci ; 10: 1763, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063916

RESUMO

Pasteuria spp. are endospore forming bacteria which act as natural antagonists to many of the most economically significant plant parasitic nematodes (PPNs). Highly species-specific nematode suppression may be observed in soils containing a sufficiently high density of Pasteuria spp. spores. This suppression is enacted by the bacteria via inhibition of root invasion and sterilization of the nematode host. Molecular methods for the detection of Pasteuria spp. from environmental DNA (eDNA) have been described; however, these methods are limited in both scale and in depth. We report the use of small subunit rRNA gene metabarcoding to profile Pasteuria spp. and nematode communities in parallel. We have investigated Pasteuria spp. population structure in Scottish soils using eDNA from two sources: soil extracted DNA from the second National Soil Inventory of Scotland (NSIS2); and nematode extracted DNA collected from farms in the East Scotland Farm Network (ESFN). We compared the Pasteuria spp. community culture to both nematode community structure and the physiochemical properties of soils. Our results indicate that Pasteuria spp. populations in Scottish soils are broadly dominated by two sequence variants. The first of these aligns with high identity to Pasteuria hartismeri, a species first described parasitizing Meloidogyne ardenensis, a nematode parasite of woody and perennial plants in northern Europe. The second aligns with a Pasteuria-like sequence which was first recovered from a farm near Edinburgh which was found to contain bacterial feeding nematodes and Pratylenchus spp. encumbered by Pasteuria spp. endospores. Further, soil carbon, moisture, bulk density, and pH showed a strong correlation with the Pasteuria spp. community composition. These results indicate that metabarcoding is appropriate for the sensitive, specific, and semi-quantitative profiling of Pasteuria species from eDNA.

19.
Sci Rep ; 7(1): 3882, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634407

RESUMO

Potato cyst nematodes (PCNs), Globodera rostochiensis and G. pallida, cause important economic losses. They are hard to manage because of their ability to remain dormant in soil for many years. Although general knowledge about these plant parasitic nematodes has considerably increased over the past decades, very little is known about molecular events involved in cyst dormancy and hatching, two key steps of their development. Here, we have studied the progression of PCN transcriptomes from dry cysts to hatched juveniles using RNA-Seq. We found that several cell detoxification-related genes were highly active in the dry cysts. Many genes linked to an increase of calcium and water uptake were up-regulated during transition from dormancy to hydration. Exposure of hydrated cysts to host plant root exudates resulted in different transcriptional response between species. After 48 h of exposure, G. pallida cysts showed no significant modulation of gene expression while G. rostochiensis had 278 differentially expressed genes. The first G. rostochiensis significantly up-regulated gene was observed after 8 h and was coding for a transmembrane metalloprotease. This enzyme is able to activate/inactivate peptide hormones and could be involved in a cascade of events leading to hatching. Several known effector genes were also up-regulated during hatching.


Assuntos
Solanum tuberosum/parasitologia , Transcriptoma , Tylenchoidea/genética , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Anotação de Sequência Molecular
20.
Genome Biol Evol ; 9(10): 2844-2861, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036290

RESUMO

The root-knot nematodes (genus Meloidogyne) are important plant parasites causing substantial agricultural losses. The Meloidogyne incognita group (MIG) of species, most of which are obligatory apomicts (mitotic parthenogens), are extremely polyphagous and important problems for global agriculture. While understanding the genomic basis for their variable success on different crops could benefit future agriculture, analyses of their genomes are challenging due to complex evolutionary histories that may incorporate hybridization, ploidy changes, and chromosomal fragmentation. Here, we sequence 19 genomes, representing five species of key root-knot nematodes collected from different geographic origins. We show that a hybrid origin that predated speciation within the MIG has resulted in each species possessing two divergent genomic copies. Additionally, the apomictic MIG species are hypotriploids, with a proportion of one genome present in a second copy. The hypotriploid proportion varies among species. The evolutionary history of the MIG genomes is revealed to be very dynamic, with noncrossover recombination both homogenizing the genomic copies, and acting as a mechanism for generating divergence between species. Interestingly, the automictic MIG species M. floridensis differs from the apomict species in that it has become homozygous throughout much of its genome.


Assuntos
Evolução Molecular , Genoma Helmíntico/genética , Genômica , Hibridização Genética , Partenogênese/genética , Ploidias , Tylenchoidea/genética , Animais , Especiação Genética , Variação Genética , Genoma Mitocondrial/genética , Filogenia , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA