Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(27): 13950-13956, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38917097

RESUMO

The plasma-surface interface has sparked interest due to its potential of creating alternative reaction pathways not available in typical gas-surface reactions. Currently, there are a limited number of in situ studies investigating the plasma-surface interface, restricting the development of its application. Here, we report the use of in situ ambient pressure X-ray photoelectron spectroscopy in tandem with an optical spectrometer to characterize the hydrogen plasma's interaction with metal surfaces. Our results demonstrate the possibility to monitor changes on the metal foil surface in situ in a plasma environment. We observed an intermediate state from the metal oxide to an -OH species during the plasma environment, indicative of reactive hydrogen radicals at room temperature. Furthermore, the formation of metal-carbides in the hydrogen plasma environment was detected, a characteristic absent in gas and vacuum environments. These findings illustrate the significance of performing in situ investigations of the plasma-surface interface to better understand and utilize its ability to create reactive environments at low temperature.

2.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068097

RESUMO

Base-catalyzed depolymerization of black liquor retentate (BLR) from the kraft pulping process, followed by ultrafiltration, has been suggested as a means of obtaining low-molecular-weight (LMW) compounds. The chemical complexity of BLR, which consists of a mixture of softwood and hardwood lignin that has undergone several kinds of treatment, leads to a complex mixture of LMW compounds, making the separation of components for the formation of value-added chemicals more difficult. Identifying the phenolic compounds in the LMW fractions obtained under different depolymerization conditions is essential for the upgrading process. In this study, a state-of-the-art nontargeted analysis method using ultra-high-performance supercritical fluid chromatography coupled to high-resolution multiple-stage tandem mass spectrometry (UHPSFC/HRMSn) combined with a Kendrick mass defect-based classification model was applied to analyze the monomers and oligomers in the LMW fractions separated from BLR samples depolymerized at 170-210 °C. The most common phenolic compound types were dimers, followed by monomers. A second round of depolymerization yielded low amounts of monomers and dimers, while a high number of trimers were formed, thought to be the result of repolymerization.

3.
Angew Chem Int Ed Engl ; 59(45): 20037-20043, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32701180

RESUMO

The catalytic oxidation of CO on transition metals, such as Pt, is commonly viewed as a sharp transition from the CO-inhibited surface to the active metal, covered with O. However, we find that minor amounts of O are present in the CO-poisoned layer that explain why, surprisingly, CO desorbs at stepped and flat Pt crystal planes at once, regardless of the reaction conditions. Using near-ambient pressure X-ray photoemission and a curved Pt(111) crystal we probe the chemical composition at surfaces with variable step density during the CO oxidation reaction. Analysis of C and O core levels across the curved crystal reveals that, right before light-off, subsurface O builds up within (111) terraces. This is key to trigger the simultaneous ignition of the catalytic reaction at different Pt surfaces: a CO-Pt-O complex is formed that equals the CO chemisorption energy at terraces and steps, leading to the abrupt desorption of poisoning CO from all crystal facets at the same temperature.

4.
J Am Chem Soc ; 140(47): 16245-16252, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30431270

RESUMO

Understanding nanoparticle catalysis requires novel approaches in which adjoining crystal orientations can be studied under the same reactive conditions. Here we use a curved palladium crystal and near-ambient pressure X-ray photoemission spectroscopy to characterize chemical species during the catalytic oxidation of CO in a whole set of surfaces vicinal to the (111) direction simultaneously. By stabilizing the reaction at fixed temperatures around the ignition point, we observe a strong variation of the catalytic activity across the curved surface. Such spatial modulation of the reaction stage is straightforwardly mapped through the photoemission signal from active oxygen species and poisoning CO, which are shown to coexist in a transient regime that depends on the vicinal angle. Line-shape analysis and direct comparison with ultrahigh vacuum experiments help identifying and quantifying all such surface species, allowing us to reveal the presence of surface oxides during reaction ignition and cooling-off.

5.
J Synchrotron Radiat ; 25(Pt 5): 1389-1394, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179177

RESUMO

High-energy surface X-ray diffraction (HESXRD) provides surface structural information with high temporal resolution, facilitating the understanding of the surface dynamics and structure of the active phase of catalytic surfaces. The surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface, and the catalytic activity of the sample itself may affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, planar laser-induced fluorescence (PLIF) and HESXRD have been combined during the oxidation of CO over a Pd(100) crystal. PLIF complements the structural studies with an instantaneous two-dimensional image of the CO2 gas phase in the vicinity of the active model catalyst. Here the combined HESXRD and PLIF operando measurements of CO oxidation over Pd(100) are presented, allowing for an improved assignment of the correlation between sample structure and the CO2 distribution above the sample surface with sub-second time resolution.

6.
Acc Chem Res ; 50(9): 2326-2333, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28880530

RESUMO

Motivated mainly by catalysis, gas-surface interaction between single crystal surfaces and molecules has been studied for decades. Most of these studies have been performed in well-controlled environments and have been instrumental for the present day understanding of catalysis, providing information on surface structures, adsorption sites, and adsorption and desorption energies relevant for catalysis. However, the approach has been criticized for being too far from a catalyst operating under industrial conditions at high temperatures and pressures. To this end, a significant amount of effort over the years has been used to develop methods to investigate catalysts at more realistic conditions under operating conditions. One result from this effort is a vivid and sometimes heated discussion concerning the active phase for the seemingly simple CO oxidation reaction over the Pt-group metals in the literature. In recent years, we have explored the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures and temperatures. In this contribution, results from catalytic CO oxidation over a Pd(100) single crystal surface using Near Ambient Pressure X-ray Photo emission Spectroscopy (NAPXPS), Planar Laser-Induced Fluorescence (PLIF), and High Energy Surface X-ray Diffraction (HESXRD) are presented, and the strengths and weaknesses of the experimental techniques are discussed. Armed with structural knowledge from ultrahigh vacuum experiments, the presence of adsorbed molecules and gas-phase induced surface structures can be identified and related to changes in the reactivity or to reaction induced gas-flow limitations. In particular, the application of PLIF to catalysis allows one to visualize how the catalyst itself changes the gas composition close to the model catalyst surface upon ignition, and relate this to the observed surface structures. The effect obscures a straightforward relation between the active phase and the activity, since in the case of CO oxidation, the gas-phase close to the model catalyst surface is shown to be significantly more oxidizing than far away from the catalyst. We show that surface structural knowledge from UHV experiments and the composition of the gas phase close to the catalyst surface are crucial to understand structure-function relationships at semirealistic conditions. In the particular case of Pd, we argue that the surface structure of the PdO(101) has a significant influence on the activity, due to the presence of Coordinatively Unsaturated Sites (CUS) Pd atoms, similar to undercoordinated Ru and Ir atoms found for RuO2(110) and IrO2(110), respectively.

8.
Energy Fuels ; 38(11): 9827-9835, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38863686

RESUMO

A crucial aspect of adding an economical and environmental dimension to the upgrading of bio-oils is to develop catalysts with enhanced and prolonged activity. In the present study, the effect of doping δ-alumina (Al2O3) with oxides of cerium (Ce) and lanthanum (La) before thermal treatment was investigated. The performance of such an Al2O3-supported nickel-molybdenum (Ni-Mo) catalyst was evaluated by studying the selectivity for the direct hydrodeoxygenation (HDO) of vanillin to cresol under continuous-flow conditions. In addition, the effect of adding H2S during catalyst activation and/or performance tests was also evaluated. Overall, enhanced performance of the doped NiMo catalyst in the HDO process has been demonstrated and an increased selectivity for cresol via direct HDO observed. The advantage of adding La and Ce is supported by the characterization results, where less sintering and enhanced pore diameter of the doped Al2O3 were observed after thermally inducing the transformation from the δ to θ phases. The improved characteristics and prolonged activity of the doped Al2O3 were also deduced by the lower acidity of the catalyst, which resulted in reduced coke formation during the HDO process.

9.
Materials (Basel) ; 16(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770120

RESUMO

Spark ablation is an advantageous method for the generation of metallic nanoparticles with defined particle sizes and compositions. The reaction of the metal particles with the carrier gas during the synthesis and, therefore, the incorporation of those light elements into structural voids or even compound formation was confirmed for hydrides and oxides but has only been suspected to occur for nitrides. In this study, dispersed nanoparticles of Mo3Ni2N and Mo with Janus morphology, and defined particle sizes were obtained by spark discharge generation as a result of carrier gas ionization and characterized using transmission electron microscopy and powder X-ray diffraction. Metal nitrides possess beneficial catalytic and thermoelectric properties, as well as high hardness and wear resistance. Therefore, this method offers the possibility of controlled synthesis of materials which are interesting for numerous applications.

10.
Nanoscale Adv ; 5(22): 6069-6077, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941940

RESUMO

Bimetallic nanoparticles have gained significant attention in catalysis as potential alternatives to expensive catalysts based on noble metals. In this study, we investigate the compositional tuning of Pd-Cu bimetallic nanoparticles using a physical synthesis method called spark ablation. By utilizing pure and alloyed electrodes in different configurations, we demonstrate the ability to tailor the chemical composition of nanoparticles within the range of approximately 80 : 20 at% to 40 : 60 at% (Pd : Cu), measured using X-ray fluorescence (XRF) and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDXS). Time-resolved XRF measurements revealed a shift in composition throughout the ablation process, potentially influenced by material transfer between electrodes. Powder X-ray diffraction confirmed the predominantly fcc phase of the nanoparticles while high-resolution TEM and scanning TEM-EDXS confirmed the mixing of Pd and Cu within individual nanoparticles. X-ray photoelectron and absorption spectroscopy were used to analyze the outermost atomic layers of the nanoparticles, which is highly important for catalytic applications. Such comprehensive analyses offer insights into the formation and structure of bimetallic nanoparticles and pave the way for the development of efficient and affordable catalysts for various applications.

11.
ACS Appl Mater Interfaces ; 15(38): 45367-45377, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704018

RESUMO

In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.

12.
Phys Chem Chem Phys ; 14(14): 4796-801, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22361687

RESUMO

The structure and chemical composition of Pd nanoparticles exposed to pure CO and mixtures of CO and O(2) at elevated temperatures have been studied in situ by a combination of X-ray Diffraction and X-ray Photoelectron Spectroscopy in pressures ranging from ultra high vacuum to 10 mbar and from room temperature to a few hundred degrees celsius. Our investigation shows that under CO exposure, above a certain temperature, carbon dissolves into the Pd particles forming a carbide phase. Upon exposure to CO and O(2) mixtures, the carbide phase forms and disappears reversibly, switching at the stoichiometric ratio for CO oxidation. This finding opens new scenarios for the understanding of catalytic oxidation of C-based molecules.

13.
J Phys Chem C Nanomater Interfaces ; 126(7): 3411-3418, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35242268

RESUMO

We have used grazing incidence X-ray absorption fine structure spectroscopy at the cobalt K-edge to characterize monolayer CoO films on Pt(111) under ambient pressure exposure to CO and O2, with the aim of identifying the Co phases present and their transformations under oxidizing and reducing conditions. X-ray absorption near edge structure (XANES) spectra show clear changes in the chemical state of Co, with the 2+ state predominant under CO exposure and the 3+ state predominant under O2-rich conditions. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis shows that the CoO bilayer characterized in ultrahigh vacuum is not formed under the conditions used in this study. Instead, the spectra acquired at low temperatures suggest formation of cobalt hydroxide and oxyhydroxide. At higher temperatures, the spectra indicate dewetting of the film and suggest formation of bulklike Co3O4 under oxidizing conditions. The experiments demonstrate the power of hard X-ray spectroscopy to probe the structures of well-defined oxide monolayers on metal single crystals under realistic catalytic conditions.

14.
ACS Catal ; 11(15): 9128-9135, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34476111

RESUMO

Performing fundamental operando catalysis studies under realistic conditions is a key to further develop and increase the efficiency of industrial catalysts. Operando X-ray photoelectron spectroscopy (XPS) experiments have been limited to pressures, and the relevance for industrial applications has been questioned. Herein, we report on the CO oxidation experiment on Pd(100) performed at a total pressure of 1 bar using XPS. We investigate the light-off regime and the surface chemical composition at the atomistic level in the highly active phase. Furthermore, the observed gas-phase photoemission peaks of CO2, CO, and O2 indicate that the kinetics of the reaction during the light-off regime can be followed operando, and by studying the reaction rate of the reaction, the activation energy is calculated. The reaction was preceded by an in situ oxidation study in 7% O2 in He and a total pressure of 70 mbar to confirm the surface sensitivity and assignment of the oxygen-induced photoemission peaks. However, oxygen-induced photoemission peaks were not observed during the reaction studies, but instead, a metallic Pd phase is present in the highly active regime under the conditions applied. The novel XPS setup utilizes hard X-rays to enable high-pressure studies, combined with a grazing incident angle to increase the surface sensitivity of the measurement. Our findings demonstrate the possibilities of achieving chemical information of the catalyst, operando, on an atomistic level, under industrially relevant conditions.

15.
J Phys Chem Lett ; 12(18): 4461-4465, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33955763

RESUMO

Using grazing incidence X-rays and X-ray photoelectron spectroscopy during the mass transfer limited catalytic oxidation of CO, the long-range surface structure of Pd(100) was investigated. Under the reaction conditions of 50:4 O2 to CO, 300 mbar pressure, and temperatures between 200 and 450 °C, the surface structure resulting from oxidation and the subsequent oxide reduction was elucidated. The reduction cycle was halted, and while under reaction conditions, angle-dependent X-ray photoelectron spectroscopy close to the critical angle of Pd and modeling of the data was performed. Two proposed models for the system were compared. The suggestion with the metallic islands formed on top of the oxide island was shown to be consistent with the data.

16.
Materials (Basel) ; 12(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718101

RESUMO

An in-depth understanding of the reaction mechanism is required for the further development of Mo-based catalysts for biobased feedstocks. However, fundamental studies of industrial catalysts are challenging, and simplified systems are often used without direct comparison to their industrial counterparts. Here, we report on size-selected bimetallic NiMo nanoparticles as a candidate for a model catalyst that is directly compared to the industrial system to evaluate their industrial relevance. Both the nanoparticles and industrial supported NiMo catalysts were characterized using surface- and bulk-sensitive techniques. We found that the active Ni and Mo metals in the industrial catalyst are well dispersed and well mixed on the support, and that the interaction between Ni and Mo promotes the reduction of the Mo oxide. We successfully produced 25 nm NiMo alloyed nanoparticles with a narrow size distribution. Characterization of the nanoparticles showed that they have a metallic core with a native oxide shell with a high potential for use as a model system for fundamental studies of hydrotreating catalysts for biobased feedstocks.

17.
J Phys Condens Matter ; 28(45): 453002, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27619414

RESUMO

In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be applied to a large number of molecules thanks to the technical development of lasers and detectors over the last decades, and is a complementary and visual alternative to traditional MS to be used in environments difficult to asses with MS. In this article we will review general considerations when performing PLIF experiments, our experimental set-up for PLIF and discuss relevant examples of PLIF applied to catalysis.

18.
ACS Catal ; 5(4): 2028-2034, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25893136

RESUMO

The gas composition surrounding a catalytic sample has direct impact on its surface structure, which is essential when in situ investigations of model catalysts are performed. Herein a study of the gas phase close to a Pd(110) surface during CO oxidation under semirealistic conditions is presented. Images of the gas phase, provided by planar laser-induced fluorescence, clearly visualize the formation of a boundary layer with a significantly lower CO partial pressure close to the catalytically active surface, in comparison to the overall concentration as detected by mass spectrometry. The CO partial pressure variation within the boundary layer will have a profound effect on the catalysts' surface structure and function and needs to be taken into consideration for in situ model catalysis studies.

19.
Nat Commun ; 6: 7076, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25953006

RESUMO

Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 µm) and temporal (15 µs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA