Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955432

RESUMO

There is an urgent need for analgesics with improved efficacy, especially in neuropathic and other chronic pain conditions. Unfortunately, in recent decades, many candidate analgesics have failed in clinical phase II or III trials despite promising preclinical results. Translational assessment tools to verify engagement of pharmacological targets and actions on compartments of the nociceptive system are missing in both rodents and humans. Through the Innovative Medicines Initiative of the European Union and EFPIA, a consortium of researchers from academia and the pharmaceutical industry was established to identify and validate a set of functional biomarkers to assess drug-induced effects on nociceptive processing at peripheral, spinal and supraspinal levels using electrophysiological and functional neuroimaging techniques. Here, we report the results of a systematic literature search for pharmacological probes that allow for validation of these biomarkers. Of 26 candidate substances, only 7 met the inclusion criteria: evidence for nociceptive system modulation, tolerability, availability in oral form for human use and absence of active metabolites. Based on pharmacokinetic characteristics, three were selected for a set of crossover studies in rodents and healthy humans. All currently available probes act on more than one compartment of the nociceptive system. Once validated, biomarkers of nociceptive signal processing, combined with a pharmacometric modelling, will enable a more rational approach to selecting dose ranges and verifying target engagement. Combined with advances in classification of chronic pain conditions, these biomarkers are expected to accelerate analgesic drug development.


Assuntos
Analgésicos , Biomarcadores Farmacológicos , Desenvolvimento de Medicamentos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/normas , Humanos , Neuralgia/tratamento farmacológico , Reprodutibilidade dos Testes , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/inervação
3.
Neuropharmacology ; 203: 108884, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785163

RESUMO

Epilepsy, one of the most common and most disabling neurological disorders, is characterized by spontaneous recurrent seizures, often associated with structural brain alterations and cognitive and psychiatric comorbidities. In about 30% of patients, the seizures are resistant to current treatments; so more effective treatments are urgently needed. Among the ∼30 clinically approved antiseizure drugs, retigabine (ezogabine) is the only drug that acts as a positive allosteric modulator (or opener) of voltage-gated Kv7 potassium channels, which is particularly interesting for some genetic forms of epilepsy. Here we describe a novel dual-mode-of-action compound, GRT-X (N-[(3-fluorophenyl)-methyl]-1-(2-methoxyethyl)-4-methyl-2-oxo-(7-trifluoromethyl)-1H-quinoline-3-carboxylic acid amide) that activates both Kv7 potassium channels and the mitochondrial translocator protein 18 kDa (TSPO), leading to increased synthesis of brain neurosteroids. TSPO activators are known to exert anti-inflammatory, neuroprotective, anxiolytic, and antidepressive effects, which, together with an antiseizure effect (mediated by Kv7 channels), would be highly relevant for the treatment of epilepsy. This prompted us to compare the antiseizure efficacy of retigabine and GRT-X in six mouse and rat models of epileptic seizures, including the 6-Hz model of difficult-to-treat focal seizures. Furthermore, the tolerability of the two compounds was compared in mice and rats. Potency comparisons were based on both doses and peak plasma concentrations. Overall, GRT-X was more effective than retigabine in three of the six seizure models used here, the most important difference being the high efficacy in the 6-Hz (32 mA) seizure model in mice. Based on drug plasma levels, GRT-X was at least 30 times more potent than retigabine in the latter model. These data indicate that GRT-X is a highly interesting novel anti-seizure drug with a unique (first-in-class) dual-mode mechanism of action.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamatos/uso terapêutico , Fenilenodiaminas/uso terapêutico , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Receptores de GABA/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Células CHO , Carbamatos/farmacologia , Cricetulus , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Fenilenodiaminas/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/agonistas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Convulsões/etiologia , Resultado do Tratamento
4.
Eur J Pharmacol ; 923: 174935, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378102

RESUMO

Chronic neuropathic pain (CNP) can result from surgery or traumatic injury, but also from peripheral neuropathies caused by diseases, viral infections, or toxic treatments. Opioids, although very effective for acute pain, do not prevent the development of CNP, and are considered as insufficient treatment. Therefore, there is high need for effective and safe non-opioid options to treat, prevent and eventually reverse CNP. A more effective approach to alleviating CNP would constitute a treatment that acts concurrently on various mechanisms involved in relieving pain symptoms and preventing or reversing chronification by enhancing both neuroprotection and neuroregeneration. We have identified and characterized GRT-X (N-[(3-fluorophenyl)-methyl]-1-(2-methoxyethyl)-4-methyl-2-oxo-(7-trifluoromethyl)-1H-quinoline-3-caboxylic acid amide), a novel drug which is able to activate both voltage-gated potassium channels of the Kv7 family and the mitochondrial translocator protein 18 kDa (TSPO). The dual mode-of-action (MoA) of GRT-X was indicated in in vitro studies and in vivo in a rat model of diabetic neuropathy. In this model, mechanical hyperalgesia was dose-dependently inhibited. After severe crush lesion of cervical spinal nerves in rats, GRT-X promoted survival, speeded up regrowth of sensory and motor neurons, and accelerated recovery of behavioral and neuronal responses to heat, cold, mechanical and electrical stimuli. These properties may reduce the likelihood of chronification of acute pain, and even potentially relieve established CNP. The absence of a conditioned place preference in rats suggests lack of abuse potential. In conclusion, GRT-X offers a promising preclinical profile with a novel dual MoA.


Assuntos
Dor Aguda , Neuralgia , Dor Aguda/tratamento farmacológico , Animais , Hiperalgesia/metabolismo , Regeneração Nervosa , Neuralgia/metabolismo , Neuroproteção , Ratos
5.
Trials ; 23(1): 163, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183242

RESUMO

BACKGROUND: Few new drugs have been developed for chronic pain. Drug development is challenged by uncertainty about whether the drug engages the human target sufficiently to have a meaningful pharmacodynamic effect. IMI2-PainCare-BioPain-RCT1 is one of four similarly designed studies that aim to link different functional biomarkers of drug effects on the nociceptive system that could serve to accelerate the future development of analgesics. This study focusses on biomarkers derived from nerve excitability testing (NET) using threshold tracking of the peripheral nervous system. METHODS: This is a multisite single-dose, subject and assessor-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD), and pharmacokinetic (PK) study in healthy subjects. Biomarkers derived from NET of large sensory and motor fibers and small sensory fibers using perception threshold tracking will be obtained before and three times after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol) and placebo, given as a single oral dose with at least 1 week apart. Motor and sensory NET will be assessed on the right wrist in a non-sensitized normal condition while perception threshold tracking will be performed bilaterally on both non-sensitized and sensitized forearm skin. Cutaneous high-frequency electrical stimulation is used to induce hyperalgesia. Blood samples will be taken for pharmacokinetic purposes and pain ratings as well as predictive psychological traits will be collected. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split across the two primary outcomes: strength-duration time constant (SDTC; a measure of passive membrane properties and nodal persistent Na+ conductance) of large sensory fibers and SDTC of large motor fibers comparing lacosamide and placebo. The key secondary endpoint is the SDTC measured in small sensory fibers. Remaining treatment arm effects on key NET outcomes and PK modelling are other prespecified secondary or exploratory analyses. DISCUSSION: Measurements of NET using threshold tracking protocols are sensitive to membrane potential at the site of stimulation. Sets of useful indices of axonal excitability collectively may provide insights into the mechanisms responsible for membrane polarization, ion channel function, and activity of ionic pumps during the process of impulse conduction. IMI2-PainCare-BioPain-RCT1 hypothesizes that NET can serve as biomarkers of target engagement of analgesic drugs in this compartment of the nociceptive system for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. TRIAL REGISTRATION: This trial was registered 25/06/2019 in EudraCT ( 2019-000942-36 ).


Assuntos
Dor , Nervos Periféricos , Biomarcadores , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Lacosamida , Estudos Multicêntricos como Assunto , Pregabalina , Ensaios Clínicos Controlados Aleatórios como Assunto , Tapentadol
6.
Trials ; 23(1): 739, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064434

RESUMO

BACKGROUND: IMI2-PainCare-BioPain-RCT2 is one of four similarly designed clinical studies aiming at profiling a set of functional biomarkers of drug effects on specific compartments of the nociceptive system that could serve to accelerate the future development of analgesics. IMI2-PainCare-BioPain-RCT2 will focus on human spinal cord and brainstem activity using biomarkers derived from non-invasive neurophysiological measurements. METHODS: This is a multisite, single-dose, double-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD) and pharmacokinetic (PK) study in healthy subjects. Neurophysiological biomarkers of spinal and brainstem activity (the RIII flexion reflex, the N13 component of somatosensory evoked potentials (SEP) and the R2 component of the blink reflex) will be recorded before and at three distinct time points after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol), and placebo, given as a single oral dose in separate study periods. Medication effects on neurophysiological measures will be assessed in a clinically relevant hyperalgesic condition (high-frequency electrical stimulation of the skin), and in a non-sensitized normal condition. Patient-reported outcome measures (pain ratings and predictive psychological traits) will also be collected; and blood samples will be taken for pharmacokinetic modelling. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split between the two primary endpoints, namely the percentage amplitude changes of the RIII area and N13 amplitude under tapentadol. Remaining treatment arm effects on RIII, N13 and R2 recovery cycle are key secondary confirmatory analyses. Complex statistical analyses and PK-PD modelling are exploratory. DISCUSSION: The RIII component of the flexion reflex is a pure nociceptive spinal reflex widely used for investigating pain processing at the spinal level. It is sensitive to different experimental pain models and to the antinociceptive activity of drugs. The N13 is mediated by large myelinated non-nociceptive fibers and reflects segmental postsynaptic response of wide dynamic range dorsal horn neurons at the level of cervical spinal cord, and it could be therefore sensitive to the action of drugs specifically targeting the dorsal horn. The R2 reflex is mediated by large myelinated non-nociceptive fibers, its circuit consists of a polysynaptic chain lying in the reticular formation of the pons and medulla. The recovery cycle of R2 is widely used for assessing brainstem excitability. For these reasons, IMI2-PainCare-BioPain-RCT2 hypothesizes that spinal and brainstem neurophysiological measures can serve as biomarkers of target engagement of analgesic drugs for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. TRIAL REGISTRATION: This trial was registered on 02 February 2019 in EudraCT ( 2019-000755-14 ).


Assuntos
Analgésicos , Dor , Medula Espinal , Analgésicos/farmacologia , Biomarcadores , Tronco Encefálico , Estudos Cross-Over , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Lacosamida , Estudos Multicêntricos como Assunto , Dor/tratamento farmacológico , Pregabalina , Ensaios Clínicos Controlados Aleatórios como Assunto , Tapentadol
7.
Trials ; 22(1): 404, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140041

RESUMO

BACKGROUND: IMI2-PainCare-BioPain-RCT3 is one of four similarly designed clinical studies aiming at profiling a set of functional biomarkers of drug effects on the nociceptive system that could serve to accelerate the future development of analgesics, by providing a quantitative understanding between drug exposure and effects of the drug on nociceptive signal processing in human volunteers. IMI2-PainCare-BioPain-RCT3 will focus on biomarkers derived from non-invasive electroencephalographic (EEG) measures of brain activity. METHODS: This is a multisite single-dose, double-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD) and pharmacokinetic (PK) study in healthy subjects. Biomarkers derived from scalp EEG measurements (laser-evoked brain potentials [LEPs], pinprick-evoked brain potentials [PEPs], resting EEG) will be obtained before and three times after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol) and placebo, given as a single oral dose in separate study periods. Medication effects will be assessed concurrently in a non-sensitized normal condition and a clinically relevant hyperalgesic condition (high-frequency electrical stimulation of the skin). Patient-reported outcomes will also be collected. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split between LEP and PEP under tapentadol. Remaining treatment arm effects on LEP or PEP or effects on EEG are key secondary confirmatory analyses. Complex statistical analyses and PK-PD modeling are exploratory. DISCUSSION: LEPs and PEPs are brain responses related to the selective activation of thermonociceptors and mechanonociceptors. Their amplitudes are dependent on the responsiveness of these nociceptors and the state of the pathways relaying nociceptive input at the level of the spinal cord and brain. The magnitude of resting EEG oscillations is sensitive to changes in brain network function, and some modulations of oscillation magnitude can relate to perceived pain intensity, variations in vigilance, and attentional states. These oscillations can also be affected by analgesic drugs acting on the central nervous system. For these reasons, IMI2-PainCare-BioPain-RCT3 hypothesizes that EEG-derived measures can serve as biomarkers of target engagement of analgesic drugs for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. TRIAL REGISTRATION: This trial was registered 25/06/2019 in EudraCT ( 2019%2D%2D001204-37 ).


Assuntos
Eletroencefalografia , Dor , Biomarcadores , Estudos Cross-Over , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Lacosamida , Medição da Dor , Pregabalina/efeitos adversos , Tapentadol
8.
Neuropharmacology ; 43(3): 327-39, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12243762

RESUMO

GluR5 receptors modulate spinal nociception, however, their role in nociceptive hypersensitivity remains unclear. Using behavioural and electrophysiological approaches, we have investigated several GluR5 ligands in acute and hyperalgesic states. Furthermore, as the GABAergic system plays a role in GluR5 mediated effects in the brain, we also analysed the interaction between GluR5 agonists and GABA(A) antagonists in the spinal cord. In young rats in vivo, the GluR5 selective agonist ATPA was antinociceptive and antihyperalgesic in a model of inflammatory hyperalgesia (ED(50) approximately 4.6 and approximately 5.2 mg/kg, respectively), whereas the GluR5/GluR6 agonist SYM2081 was only antihyperalgesic. ATPA, but not SYM2081, was also able to inhibit nociceptive motoneurone responses in anaesthetised adult rats after intrathecal administration. In hemisected spinal cords in vitro, SYM2081 was inactive, whereas ATPA and another GluR5 agonist, (S)-5-iodowillardiine, inhibited nociceptive reflexes (EC(50) 1.1+/-0.4 micro M and 0.36+/-0.05 micro M, respectively). Both GluR5 agonists also inhibited motoneurone responses to repetitive dorsal root stimulation and their cumulative depolarisation, a correlate of wind-up. The GABA(A) antagonists bicuculline (10 micro M) and SR95531 (1 micro M) enhanced polysynaptic responses to single stimuli but abolished the cumulative depolarisation. Both bicuculline and SR95531 significantly attenuated the inhibition of nociceptive responses by 1 micro M ATPA (by approximately 50%). We conclude that selective GluR5 kainate receptor activation inhibits spinal nociception and its sensitisation caused by ongoing peripheral nociceptive drive. GABA(A) receptors are involved in tonic inhibition of segmental responses, but contribute to their sensitisation by repetitive primary afferent stimulation. Furthermore, there is a cross-talk between the two systems, presumably due to GluR5-mediated activation of GABAergic inhibitory interneurones in the spinal cord.


Assuntos
Hiperalgesia/fisiopatologia , Nociceptores/fisiologia , Receptores de Ácido Caínico/efeitos dos fármacos , Medula Espinal/fisiologia , Ácido gama-Aminobutírico/fisiologia , Anestesia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Bicuculina/farmacologia , Estimulação Elétrica , Eletrofisiologia , Feminino , Antagonistas GABAérgicos/farmacologia , Glutamatos/farmacologia , Interneurônios/fisiologia , Ligantes , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Nociceptores/efeitos dos fármacos , Piridazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Ácido Caínico/antagonistas & inibidores
9.
Neurotoxicology ; 33(1): 127-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22209701

RESUMO

During drug development, seizure threshold tests are widely used to identify potential proconvulsant activity of investigational drugs. The most commonly used tests in this respect are the timed intravenous pentylenetetrazole (PTZ) infusion seizure test and the maximal electroshock seizure threshold (MEST) test in mice or rats. To our knowledge, no study is available in which proconvulsant drug activities in these models are directly compared, which prompted us to perform such experiments in male Wistar rats. Five drugs with reported proconvulsant activity were tested in the two models: d-amphetamine, chlorpromazine, caffeine, theophylline, and tramadol. Furthermore, the anticonvulsant drug phenobarbital was included in the experiments. While phenobarbital exerted anticonvulsant activity in both models, the five proconvulsant drugs markedly differed in their effects. In the dose range tested, d-amphetamine significantly lowered the PTZ seizure threshold but increased the MEST, caffeine and theophylline did not alter the PTZ seizure threshold but decreased the MEST, and tramadol reduced the PTZ threshold but increased the MEST. These marked differences between seizure threshold tests are most likely a consequence of the mechanisms underlying seizure induction in these tests. Our data indicate that using only one seizure threshold model during preclinical drug development may pose the risk that potential proconvulsant activity of an investigational drug is overseen. However, the label "proconvulsant" may be misleading if such activity only occurs at doses high above the therapeutic range, but the drug is not proconvulsant or even exerts anticonvulsant effects at lower, therapeutically relevant doses.


Assuntos
Anticonvulsivantes/uso terapêutico , Convulsivantes/efeitos adversos , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Convulsões/etiologia , Animais , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Clorpromazina/farmacologia , Dextroanfetamina/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Masculino , Pentilenotetrazol/toxicidade , Fenobarbital/uso terapêutico , Inibidores de Fosfodiesterase , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Convulsões/tratamento farmacológico , Teofilina , Fatores de Tempo , Tramadol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA