Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Chem ; 299(1): 102786, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509145

RESUMO

Escherichia coli YoaA aids in the resolution of DNA damage that halts DNA synthesis in vivo in conjunction with χ, an accessory subunit of DNA polymerase III. YoaA and χ form a discrete complex separate from the DNA polymerase III holoenzyme, but little is known about how YoaA and χ work together to help the replication fork overcome damage. Although YoaA is predicted to be an iron-sulfur helicase in the XPD/Rad3 helicase family based on sequence analysis, the biochemical activities of YoaA have not been described. Here, we characterize YoaA and show that purified YoaA contains iron. YoaA and χ form a complex that is stable through three chromatographic steps, including gel filtration chromatography. When overexpressed in the absence of χ, YoaA is mostly insoluble. In addition, we show the YoaA-χ complex has DNA-dependent ATPase activity. Our measurement of the YoaA-χ helicase activity illustrates for the first time YoaA-χ translocates on ssDNA in the 5' to 3' direction and requires a 5' single-stranded overhang, or ssDNA gap, for DNA/DNA unwinding. Furthermore, YoaA-χ preferentially unwinds forked duplex DNA that contains both 3' and 5' single-stranded overhangs versus duplex DNA with only a 5' overhang. Finally, we demonstrate YoaA-χ can unwind damaged DNA that contains an abasic site or damage on 3' ends that stall replication extension. These results are the first biochemical evidence demonstrating YoaA is a bona fide iron-sulfur helicase, and we further propose the physiologically relevant form of the helicase is YoaA-χ.


Assuntos
DNA Helicases , DNA Polimerase III , Proteínas de Escherichia coli , Escherichia coli , DNA Helicases/metabolismo , DNA Polimerase III/genética , Replicação do DNA , DNA de Cadeia Simples , Escherichia coli/metabolismo , Ferro , Proteínas de Escherichia coli/metabolismo , Reparo do DNA
2.
Nucleic Acids Res ; 50(22): 12872-12884, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36511874

RESUMO

Single-stranded DNA binding proteins (SSBs) avidly bind ssDNA and yet enzymes that need to act during DNA replication and repair are not generally impeded by SSB, and are often stimulated by SSB. Here, the effects of Escherichia coli SSB on the activities of the DNA polymerase processivity clamp loader were investigated. SSB enhances binding of the clamp loader to DNA by increasing the lifetime on DNA. Clamp loading was measured on DNA substrates that differed in length of ssDNA overhangs to permit SSB binding in different binding modes. Even though SSB binds DNA adjacent to single-stranded/double-stranded DNA junctions where clamps are loaded, the rate of clamp loading on DNA was not affected by SSB on any of the DNA substrates. Direct measurements of the relative timing of DNA-SSB remodeling and enzyme-DNA binding showed that the clamp loader rapidly remodels SSB on DNA such that SSB has little effect on DNA binding rates. However, when SSB was mutated to reduce protein-protein interactions with the clamp loader, clamp loading was inhibited by impeding binding of the clamp loader to DNA. Thus, protein-protein interactions between the clamp loader and SSB facilitate rapid DNA-SSB remodeling to allow rapid clamp loader-DNA binding and clamp loading.


Assuntos
Proteínas de Escherichia coli , Replicação do DNA/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Reparo do DNA/genética
3.
J Biol Chem ; 298(9): 102385, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985424

RESUMO

Asparagine synthetase (ASNS) catalyzes synthesis of asparagine (Asn) and Glu from Asp and Gln in an ATP-dependent reaction. Asparagine synthetase deficiency (ASNSD) results from biallelic mutations in the ASNS gene. Affected children exhibit congenital microcephaly, continued brain atrophy, seizures, and often premature mortality. However, the underlying mechanisms are unclear. This report describes a compound heterozygotic ASNSD child with two novel mutations in the ASNS gene, c.1118G>T (paternal) and c.1556G>A (maternal), that lead to G373V or R519H ASNS variants. Structural mapping suggested that neither variant participates directly in catalysis. Growth of cultured fibroblasts from either parent was unaffected in Asn-free medium, whereas growth of the child's cells was suppressed by about 50%. Analysis of Asn levels unexpectedly revealed that extracellular rather than intracellular Asn correlated with the reduced proliferation during incubation of the child's cells in Asn-free medium. Our attempts to ectopically express the G373V variant in either HEK293T or JRS cells resulted in minimal protein production, suggesting instability. Protein expression and purification from HEK293T cells revealed reduced activity for the R519H variant relative to WT ASNS. Expression of WT ASNS in ASNS-null JRS cells resulted in nearly complete rescue of growth in Asn-free medium, whereas we observed no proliferation for the cells expressing either the G373V or R519H variant. These results support the conclusion that the coexpression of the G373V and R519H ASNS variants leads to significantly reduced Asn synthesis, which negatively impacts cellular growth. These observations are consistent with the ASNSD phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Aspartato-Amônia Ligase , Deficiência Intelectual , Microcefalia , Doenças Neurodegenerativas , Trifosfato de Adenosina , Asparagina/genética , Aspartato-Amônia Ligase/química , Atrofia , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Criança , Células HEK293 , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Mutação
4.
Biophys J ; 120(1): 73-85, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33221249

RESUMO

Sliding clamps are oligomeric ring-shaped proteins that increase the efficiency of DNA replication. The stability of the Escherichia coli ß-clamp, a homodimer, is particularly remarkable. The dissociation equilibrium constant of the ß-clamp is of the order of 10 pM in buffers of moderate ionic strength. Coulombic electrostatic interactions have been shown to contribute to this remarkable stability. Increasing NaCl concentration in the assay buffer results in decreased dimer stability and faster subunit dissociation kinetics in a way consistent with simple charge-screening models. Here, we examine non-Coulombic ionic effects on the oligomerization properties of sliding clamps. We determined relative diffusion coefficients of two sliding clamps using fluorescence correlation spectroscopy. Replacing NaCl by KGlu, the primary cytoplasmic salt in E. coli, results in a decrease of the diffusion coefficient of these proteins consistent with the formation of protein assemblies. The UV-vis spectrum of the ß-clamp labeled with tetramethylrhodamine shows the characteristic absorption band of dimers of rhodamine when KGlu is present in the buffer. This suggests that KGlu induces the formation of assemblies that involve two or more rings stacked face-to-face. Results can be quantitatively explained on the basis of unfavorable interactions between KGlu and the functional groups on the protein surface, which drive biomolecular processes that bury exposed surface. Similar results were obtained with the Saccharomyces cerevisiae PCNA sliding clamp, suggesting that KGlu effects are not specific to the ß-clamp. Clamp association is also promoted by glycine betaine, a zwitterionic compound that accumulates intracellularly when E. coli is exposed to high concentrations of extracellular solute. Possible biological implications are discussed.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Betaína , Replicação do DNA , Escherichia coli/metabolismo , Ácido Glutâmico , Antígeno Nuclear de Célula em Proliferação/metabolismo
5.
Nucleic Acids Res ; 45(17): 10178-10189, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973453

RESUMO

Clamp loaders load ring-shaped sliding clamps onto DNA where the clamps serve as processivity factors for DNA polymerases. In the first stage of clamp loading, clamp loaders bind and stabilize clamps in an open conformation, and in the second stage, clamp loaders place the open clamps around DNA so that the clamps encircle DNA. Here, the mechanism of the initial clamp opening stage is investigated. Mutations were introduced into the Escherichia coli ß-sliding clamp that destabilize the dimer interface to determine whether the formation of an open clamp loader-clamp complex is dependent on spontaneous clamp opening events. In other work, we showed that mutation of a positively charged Arg residue at the ß-dimer interface and high NaCl concentrations destabilize the clamp, but neither facilitates the formation of an open clamp loader-clamp complex in experiments presented here. Clamp opening reactions could be fit to a minimal three-step 'bind-open-lock' model in which the clamp loader binds a closed clamp, the clamp opens, and subsequent conformational rearrangements 'lock' the clamp loader-clamp complex in a stable open conformation. Our results support a model in which the E. coli clamp loader actively opens the ß-sliding clamp.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , DNA Polimerase III/química , DNA Bacteriano/genética , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Modelos Químicos , Modelos Moleculares , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Subunidades Proteicas , Cloreto de Sódio/farmacologia , Relação Estrutura-Atividade
6.
Biophys J ; 113(4): 794-804, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834716

RESUMO

Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli ß-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the ß-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states.


Assuntos
DNA Polimerase III/química , DNA Polimerase III/metabolismo , Escherichia coli/enzimologia , Multimerização Proteica , Eletricidade Estática , DNA Polimerase III/genética , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Mutação , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Sais/farmacologia
7.
J Struct Biol ; 194(3): 272-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26968362

RESUMO

Sliding clamps are opened and loaded onto primer template junctions by clamp loaders, and once loaded on DNA, confer processivity to replicative polymerases. Previously determined crystal structures of eukaryotic and T4 clamp loader-clamp complexes have captured the sliding clamps in either closed or only partially open interface conformations. In these solution structure studies, we have captured for the first time the clamp loader-sliding clamp complex from Escherichia coli using size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). The data suggests the sliding clamp is in an open conformation which is wide enough to permit duplex DNA binding. The data also provides information about spatial arrangement of the sliding clamp with respect to the clamp loader subunits and is compared to complex crystal structures determined from other organisms.


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA , Escherichia coli/enzimologia , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cromatografia em Gel , DNA Bacteriano , Escherichia coli/genética , Proteínas de Escherichia coli , Conformação Proteica , Subunidades Proteicas , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
8.
Biochim Biophys Acta ; 1854(1): 31-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450506

RESUMO

DNA polymerases require a sliding clamp to achieve processive DNA synthesis. The toroidal clamps are loaded onto DNA by clamp loaders, members of the AAA+family of ATPases. These enzymes utilize the energy of ATP binding and hydrolysis to perform a variety of cellular functions. In this study, a clamp loader-clamp binding assay was developed to measure the rates of ATP-dependent clamp binding and ATP-hydrolysis-dependent clamp release for the Saccharomyces cerevisiae clamp loader (RFC) and clamp (PCNA). Pre-steady-state kinetics of PCNA binding showed that although ATP binding to RFC increases affinity for PCNA, ATP binding rates and ATP-dependent conformational changes in RFC are fast relative to PCNA binding rates. Interestingly, RFC binds PCNA faster than the Escherichia coli γ complex clamp loader binds the ß-clamp. In the process of loading clamps on DNA, RFC maintains contact with PCNA while PCNA closes, as the observed rate of PCNA closing is faster than the rate of PCNA release, precluding the possibility of an open clamp dissociating from DNA. Rates of clamp closing and release are not dependent on the rate of the DNA binding step and are also slower than reported rates of ATP hydrolysis, showing that these rates reflect unique intramolecular reaction steps in the clamp loading pathway.


Assuntos
Trifosfato de Adenosina/química , Antígeno Nuclear de Célula em Proliferação/química , Proteína de Replicação C/química , Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Ligação Competitiva , Catálise , Cumarínicos/química , Cumarínicos/metabolismo , DNA/química , DNA/metabolismo , Cinética , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Moleculares , Mutação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
9.
Nucleic Acids Res ; 42(16): 10655-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25159615

RESUMO

Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3'OH (3'DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3'DNA, fluorescent ß and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5'phosphate (5'P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5'DNA). The 5'P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3'DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5'DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3'DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Adenosina Trifosfatases/metabolismo , DNA/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Replicação C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
10.
Nucleic Acids Res ; 42(12): 7708-19, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24848015

RESUMO

Excision repair processes are essential to maintain genome stability. A decrease in efficiency and fidelity of these pathways at regions of the genome that can assume non-canonical DNA structures has been proposed as a possible mechanism to explain the increased mutagenesis and consequent diseased state frequently associated with these sites. Here we describe the development of a FRET-based approach to monitor the presence of G quadruplex (G4) DNA, a non-canonical DNA structure formed in runs of guanines, in damage-containing single-stranded and double-stranded DNA. Using this approach, we directly show for the first time that the presence within the G4 structure of an abasic site, the most common lesion spontaneously generated during cellular metabolism, decreases the efficiency of human AP endonuclease activity and that this effect is mostly the result of a decreased enzymatic activity and not of decreased binding of the enzyme to the damaged site. This approach can be generally applied to dissecting the biochemistry of DNA repair at non-canonical DNA structures.


Assuntos
Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Quadruplex G , DNA/química , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Genes myc , Polietilenoglicóis/química
11.
Nucleic Acids Res ; 42(10): 6476-86, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24728995

RESUMO

Sliding clamps are ring-shaped oligomeric proteins that are essential for processive deoxyribonucleic acid replication. Although crystallographic structures of several clamps have been determined, much less is known about clamp structure and dynamics in solution. Here, we characterized the intrinsic solution stability and oligomerization dynamics of the homodimeric Escherichia coli ß and the homotrimeric Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) clamps using single-molecule approaches. We show that E. coli ß is stable in solution as a closed ring at concentrations three orders of magnitude lower than PCNA. The trimeric structure of PCNA results in slow subunit association rates and is largely responsible for the lower solution stability. Despite this large difference, the intrinsic lifetimes of the rings differ by only one order of magnitude. Our results show that the longer lifetime of the E. coli ß dimer is due to more prominent electrostatic interactions that stabilize the subunit interfaces.


Assuntos
DNA Polimerase III/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , DNA Polimerase III/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Multimerização Proteica , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Fluorescência
12.
J Biol Chem ; 289(9): 5537-48, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24436332

RESUMO

Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including a conserved Lys located within the Walker A motif (or P-loop). This residue is required for each subunit to bind ATP. The specific function of each ATP molecule bound to the Saccharomyces cerevisiae clamp loader is unknown. A series of point mutants, each lacking a single Walker A Lys residue, was generated to study the effects of abolishing ATP binding in individual clamp loader subunits. A variety of biochemical assays were used to analyze the function of ATP binding during discrete steps of the clamp loading reaction. All mutants reduced clamp binding/opening to different degrees. Decreased clamp binding activity was generally correlated with decreases in the population of open clamps, suggesting that differences in the binding affinities of Walker A mutants stem from differences in stabilization of proliferating cell nuclear antigen in an open conformation. Walker A mutations had a smaller effect on DNA binding than clamp binding/opening. Our data do not support a model in which each ATP site functions independently to regulate a different step in the clamp loading cycle to coordinate these steps. Instead, the ATP sites work in unison to promote conformational changes in the clamp loader that drive clamp loading.


Assuntos
DNA Fúngico/química , DNA Polimerase Dirigida por DNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , DNA Fúngico/biossíntese , DNA Fúngico/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutação Puntual , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 288(2): 1162-70, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23161545

RESUMO

Escherichia coli γ complex clamp loader functions to load the ß sliding clamp onto sites of DNA replication and repair. The clamp loader uses the energy of ATP binding and hydrolysis to drive conformational changes allowing for ß binding and opening, DNA binding, and then release of the ß·DNA complex. Although much work has been done studying the sliding clamp and clamp loader mechanism, kinetic analysis of the events following ߷γ complex·DNA formation is not complete. Using fluorescent clamp closing and release assays, we show that ß closing is faster than ß release, indicating that γ complex closes ß before releasing it around DNA. Using a fluorescent ATP hydrolysis assay, we show that there is a burst of ATP hydrolysis before ß closing and that ß release may be the rate-limiting step in the overall clamp loading reaction. The combined use of these fluorescent assays provides a unique perspective into the E. coli clamp loader by providing a measure of the relative timing of different events in the clamp loading reaction, helping to elucidate the complicated clamp loading mechanism.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Trifosfato de Adenosina/metabolismo , Hidrólise
14.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948847

RESUMO

The Escherichia coli XPD/Rad3-like helicase, YoaA, and DNA polymerase III subunit, χ, are involved in E. coli DNA damage tolerance and repair. YoaA and χ promote tolerance to the DNA chain-terminator, 3 -azidothymidine (AZT), and together form the functional helicase complex, YoaA-χ. How YoaA-χ contributes to DNA damage tolerance is not well understood. E. coli single-stranded DNA binding protein (SSB) accumulates at stalled replication forks, and the SSB-χ interaction is required to promote AZT tolerance via an unknown mechanism. YoaA-χ and SSB interactions were investigated in vitro to better understand this DNA damage tolerance mechanism, and we discovered YoaA-χ and SSB have a functional interaction. SSB confers a substrate-specific effect on the helicase activity of YoaA-χ, barely affecting YoaA-χ on an overhang DNA substrate but inhibiting YoaA-χ on forked DNA. A paralog helicase, DinG, unwinds SSB-bound DNA in a similar manner to YoaA-χ on the substrates tested. Through use of ensemble experiments, we believe SSB binds behind YoaA-χ relative to the DNA ds/ss junction and show via single-molecule assays that SSB translocates along ssDNA with YoaA-χ. This is, to our knowledge, the first demonstration of a mechanoenzyme pulling SSB along ssDNA.

15.
J Biol Chem ; 287(3): 2203-9, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22115746

RESUMO

Clamp loaders from all domains of life load clamps onto DNA. The clamp tethers DNA polymerases to DNA to increase the processivity of synthesis as well as the efficiency of replication. Here, we investigated proliferating cell nuclear antigen (PCNA) binding and opening by the Saccharomyces cerevisiae clamp loader, replication factor C (RFC), and the DNA damage checkpoint clamp loader, Rad24-RFC, using two separate fluorescence intensity-based assays. Analysis of PCNA opening by RFC revealed a two-step reaction in which RFC binds PCNA before opening PCNA rather than capturing clamps that have transiently and spontaneously opened in solution. The affinity of RFC for PCNA is about an order of magnitude lower in the absence of ATP than in its presence. The affinity of Rad24-RFC for PCNA in the presence of ATP is about an order magnitude weaker than that of RFC for PCNA, similar to the RFC-PCNA interaction in the absence of ATP. Importantly, fewer open clamp loader-clamp complexes are formed when PCNA is bound by Rad24-RFC than when bound by RFC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexos Multiproteicos/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Proteína de Replicação C/genética , Saccharomyces cerevisiae/genética
16.
J Biol Chem ; 286(49): 42704-42714, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21971175

RESUMO

Clamp loaders load ring-shaped sliding clamps onto DNA. Once loaded onto DNA, sliding clamps bind to DNA polymerases to increase the processivity of DNA synthesis. To load clamps onto DNA, an open clamp loader-clamp complex must form. An unresolved question is whether clamp loaders capture clamps that have transiently opened or whether clamp loaders bind closed clamps and actively open clamps. A simple fluorescence-based clamp opening assay was developed to address this question and to determine how ATP binding contributes to clamp opening. A direct comparison of real time binding and opening reactions revealed that the Escherichia coli γ complex binds ß first and then opens the clamp. Mutation of conserved "arginine fingers" in the γ complex that interact with bound ATP decreased clamp opening activity showing that arginine fingers make an important contribution to the ATP-induced conformational changes that allow the clamp loader to pry open the clamp.


Assuntos
DNA Polimerase Dirigida por DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Arginina/química , Cristalografia por Raios X/métodos , Replicação do DNA , Relação Dose-Resposta a Droga , Cinética , Microscopia de Fluorescência/métodos , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Mutação , Conformação Proteica
17.
Protein Expr Purif ; 83(2): 135-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22469630

RESUMO

Protein insolubility often poses a significant problem during purification protocols and in enzyme assays, especially for eukaryotic proteins expressed in a recombinant bacterial system. The limited solubility of replication factor C (RFC), the clamp loader complex from Saccharomyces cerevisiae, has been previously documented. We found that mutant forms of RFC harboring a single point mutation in the Walker A motif were even less soluble than the wild-type complex. The addition of maltose at 0.75 M to the storage and assay buffers greatly increases protein solubility and prevents the complex from falling apart. Our analysis of the clamp loading reaction is dependent on fluorescence-based assays, which are environmentally sensitive. Using wt RFC as a control, we show that the addition of maltose to the reaction buffers does not affect fluorophore responses in the assays or the enzyme activity, indicating that maltose can be used as a buffer additive for further downstream analysis of these mutants.


Assuntos
Proteínas Recombinantes/química , Proteína de Replicação C/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Cromatografia em Gel , Maltose/química , Maltose/metabolismo , Modelos Moleculares , Mutação Puntual , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Solubilidade
18.
Cells ; 10(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062858

RESUMO

In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two "UV mutagenesis" genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD'2C-RecA-ATP. Here, we explore the role of the ß-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of ß. The results suggest that ß may have two stabilizing roles: its canonical role in tethering the pol at a primer-3'-terminus, and a possible second role in inhibiting pol V Mut's ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.


Assuntos
Primers do DNA , DNA Polimerase Dirigida por DNA/genética , DNA/análise , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Mutagênese , Mutação , Plasmídeos/metabolismo , Raios Ultravioleta
19.
DNA Repair (Amst) ; 100: 103006, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33582602

RESUMO

Efficient and faithful replication of DNA is essential for all organisms. However, the replication fork frequently encounters barriers that need to be overcome to ensure cell survival and genetic stability. Cells must carefully balance and regulate replication vs. repair reactions. In Escherichia coli, the replisome consists of the DNA polymerase III holoenzyme, including DNA polymerase, proofreading exonuclease, processivity clamp and clamp loader, as well as a fork helicase, DnaB and primase, DnaG. We provide evidence here that one component of the clamp loader complex, HolC (or χ) plays a dual role via its ability to form 2 mutually exclusive complexes: one with HolD (or ψ) that recruits the clamp-loader and hence the DNA polymerase holoenzyme and another with helicase-like YoaA protein, a DNA-damage inducible repair protein. By yeast 2 hybrid analysis, we show that two residues of HolC, F64 and W57, at the interface in the structure with HolD, are required for interaction with HolD and for interaction with YoaA. Mutation of these residues does not interfere with HolC's interaction with single-strand DNA binding protein, SSB. In vivo, these mutations fail to complement the poor growth and sensitivity to azidothymidine, a chain-terminating replication inhibitor. In support of the notion that these are exclusive complexes, co-expression of HolC, HolD and YoaA, followed by pulldown of YoaA, yields a complex with HolC but not HolD. YoaA fails to pulldown HolC-F64A. We hypothesize that HolC, by binding with SSB, can recruit the DNA polymerase III holoenzyme through HolD, or an alternative repair complex with YoaA helicase.


Assuntos
DNA Polimerase III/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/genética , Ligação Proteica , Conformação Proteica
20.
J Biol Chem ; 284(46): 32147-57, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19759003

RESUMO

In Escherichia coli, the gamma complex clamp loader loads the beta-sliding clamp onto DNA. The beta clamp tethers DNA polymerase III to DNA and enhances the efficiency of replication by increasing the processivity of DNA synthesis. In the presence of ATP, gamma complex binds beta and DNA to form a ternary complex. Binding to primed template DNA triggers gamma complex to hydrolyze ATP and release the clamp onto DNA. Here, we investigated the kinetics of forming a ternary complex by measuring rates of gamma complex binding beta and DNA. A fluorescence intensity-based beta binding assay was developed in which the fluorescence of pyrene covalently attached to beta increases when bound by gamma complex. Using this assay, an association rate constant of 2.3 x 10(7) m(-1) s(-1) for gamma complex binding beta was determined. The rate of beta binding was the same in experiments in which gamma complex was preincubated with ATP before adding beta or added directly to beta and ATP. In contrast, when gamma complex is preincubated with ATP, DNA binding is faster than when gamma complex is added to DNA and ATP at the same time. Slow DNA binding in the absence of ATP preincubation is the result of a rate-limiting ATP-induced conformational change. Our results strongly suggest that the ATP-induced conformational changes that promote beta binding and DNA binding differ. The slow ATP-induced conformational change that precedes DNA binding may provide a kinetic preference for gamma complex to bind beta before DNA during the clamp loading reaction cycle.


Assuntos
Trifosfato de Adenosina/farmacologia , DNA Polimerase III/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Sítios de Ligação , DNA Polimerase III/química , DNA Polimerase III/genética , Replicação do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA