Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
BMC Public Health ; 23(1): 240, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737718

RESUMO

BACKGROUND: Since social distancing during the COVID-19-pandemic had a profound impact on professional life, this study investigated the effect of PCR testing on on-site work. METHODS: PCR screening, antibody testing, and questionnaires offered to 4,890 working adults in Lower Saxony were accompanied by data collection on demographics, family status, comorbidities, social situation, health-related behavior, and the number of work-related contacts. Relative risks (RR) with 95 % confidence intervals were estimated for the associations between regular PCR testing and other work and health-related variables, respectively, and working on-site. Analyses were stratified by the suitability of work tasks for mobile office. RESULTS: Between April 2020 and February 2021, 1,643 employees underwent PCR testing. Whether mobile working was possible strongly influenced the work behavior. Persons whose work was suitable for mobile office (mobile workers) had a lower probability of working on-site than persons whose work was not suitable for mobile office (RR = 0.09 (95 % CI: 0.07 - 0.12)). In mobile workers, regular PCR-testing was slightly associated with working on-site (RR = 1.19 (0.66; 2.14)). In those whose working place was unsuitable for mobile office, the corresponding RR was 0.94 (0.80; 1.09). Compared to persons without chronic diseases, chronically ill persons worked less often on-site if their workplace was suitable for mobile office (RR = 0.73 (0.40; 1.33)), but even more often if their workplace was not suitable for mobile office (RR = 1.17 (1.04; 1.33)). CONCLUSION: If work was suitable for mobile office, regular PCR-testing did not have a strong effect on presence at the work site. TRIAL REGISTRATION: An ethics vote of the responsible medical association (Lower Saxony, Germany) retrospectively approved the evaluation of the collected subject data in a pseudonymized form in the context of medical studies (No. Bo/30/2020; Bo/31/2020; Bo/32/2020).


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/epidemiologia , Pandemias , Estudos Retrospectivos , Local de Trabalho , Reação em Cadeia da Polimerase , Teste para COVID-19
2.
J Cell Sci ; 133(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822628

RESUMO

Human rhinoviruses (HRVs) express 2 cysteine proteases, 2A and 3C, that are responsible for viral polyprotein processing. Both proteases also suppress host gene expression by inhibiting mRNA transcription, nuclear export and cap-dependent translation. However, the relative contribution that each makes in achieving this goal remains unclear. In this study, we have compared both the combined and individual ability of the two proteases to shut down cellular gene expression using a novel dynamic reporter system. Our findings show that 2A inhibits host gene expression much more rapidly than 3C. By comparing the activities of a representative set of proteases from the three different HRV species, we also find variation in the speed at which host gene expression is suppressed. Our work highlights the key role that 2A plays in early suppression of the infected host cell response and shows that this can be influenced by natural variation in the activity of this enzyme.


Assuntos
Expressão Gênica/genética , Peptídeo Hidrolases/metabolismo , Rhinovirus/genética , Humanos
3.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35777774

RESUMO

Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.


Assuntos
Pulmão , Doenças Respiratórias , Humanos , Animais , Camundongos , Pulmão/fisiologia , Engenharia Tecidual/métodos
4.
Microvasc Res ; 143: 104402, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753506

RESUMO

In regenerative medicine, autologous peripheral blood derived endothelial colony forming cells (PB-derived ECFC) represent a promising source of endothelial cells (EC) for pre-endothelialization of arterial tissue engineered vascular grafts (TEVG) since they are readily attainable, can easily be isolated and possess a high proliferation potential. The aim of this study was to compare the phenotype of PB-derived ECFC with arterial and venous model cells such as human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) under dynamic cell culture conditions to find a suitable cell source of EC for pre-endothelialization. In this study PB-derived ECFC were cultivated over 24 h under a high pulsatile shear stress (20 dyn/cm2, 1 Hz) and subsequently analyzed. ECFC oriented and elongated in the direction of flow and expressed similar anti-thrombotic and endothelial differentiation markers compared to HAEC. There were significant differences observable in gene expression levels of CD31, CD34 and NOTCH4 between ECFC and HUVEC. These results therefore suggest an arterial phenotype for PB-derived ECFC both under static and flow conditions, and this was supported by NOTCH4 protein expression profiles. ECFC also significantly up-regulated gene expression levels of anti-thrombotic genes such as krueppel-like factor 2, endothelial nitric oxide synthase 3 and thrombomodulin under shear stress cultivation as compared to static conditions. Dynamically cultured PB-derived ECFC therefore may be a promising cell source for pre-endothelialization of arterial TEVGs.


Assuntos
Artérias , Prótese Vascular , Técnicas de Cultura de Células , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos
5.
Microvasc Res ; 134: 104107, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33212112

RESUMO

In regenerative medicine, autologous endothelial colony forming cells (ECFCs) bear the greatest potential to be used for surface endothelialization of tissue engineered constructs, as they are easily attainable and possess a high proliferation rate. The aim of this study was to develop a standardized pre-conditioning protocol under dynamic conditions simulating the physiology of human circulation to improve the formation of a flow resistant monolayer of ECFCs and to enhance the antithrombogenicity of the endothelial cells. The main focus of the study was to consequently compare the cellular behavior under a steady laminar flow against a pulsatile flow. Mononuclear cells were isolated out of peripheral blood (PB) buffy coats and plated on uncoated tissue culture flasks in anticipation of guidelines for Advanced Therapy Medicinal Products. ECFCs were identified by typical surface markers such as CD31, CD146 and VE-Cadherin. To explore the effects of dynamic cultivation, ECFCs and human umbilical vein endothelial cells were comparatively cultured under either laminar or pulsatile (1 Hz) flow conditions with different grades of shear stress (5 dyn/cm2versus 20 dyn/cm2). High shear stress of 20 dyn/cm2 led to a significant upregulation of the antithrombotic gene marker thrombomodulin in both cell types, but only ECFCs orientated and elongated significantly after shear stress application forming a confluent endothelial cell layer. The work therefore documents a suitable protocol to pre-condition PB-derived ECFCs for sustainable endothelialization of blood contacting surfaces and provides essential knowledge for future cultivations in bioreactor systems.


Assuntos
Células Progenitoras Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Mecanotransdução Celular , Fluxo Pulsátil , Engenharia Tecidual , Antígenos CD/metabolismo , Reatores Biológicos , Antígeno CD146/metabolismo , Caderinas/metabolismo , Técnicas de Cultura de Células/instrumentação , Forma Celular , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Feminino , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Fisiológica , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Estresse Mecânico , Trombomodulina/genética , Trombomodulina/metabolismo
6.
Biotechnol Bioeng ; 118(11): 4168-4185, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34287844

RESUMO

The field of optogenetics is rapidly growing in relevance and number of developed tools. Among other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems, will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications.


Assuntos
Regulação da Expressão Gênica , Optogenética , Animais , Humanos
7.
Analyst ; 146(17): 5369-5379, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34337623

RESUMO

Kidney is the most frequently transplanted among all solid organs worldwide. Kidney transplant recipients (KTRs) undergo regular follow-up examinations for the early detection of acute rejections. The gold standard for proving a T-cell mediated rejection (TCMR) is a biopsy of the renal graft often occurring as indication biopsy, in parallel to an increased serum creatinine that may indicate deterioration of renal transplant function. The goal of the current work was to establish a lateral flow assay (LFA) for diagnosing acute TCMR to avoid harmful, invasive biopsies. Soluble interleukin-2 (IL-2) receptor (sIl-2R) is a potential biomarker representing the α-subunit of the IL-2 receptor produced by activated T-cells, e.g., after allogen contact. To explore the diagnostic potential of sIL-2R as a biomarker for TCMR and borderline TCMR, plasma and urine samples were collected from three independent KTR cohorts with various distinct histopathological diagnostic findings according to BANFF (containing 112 rsp. 71 rsp. 61 KTRs). Samples were analyzed by a Luminex-based multiplex technique and cut off-ranges were determined. An LFA was established with two specific sIL-2R-antibodies immobilized on a nitrocellulose membrane. A significant association between TCMR, borderline TCMR and sIL-2R in plasma and between TCMR and sIL-2R in urine of KTRs was confirmed using the Mann-Whitney U test. The LFA was tested with sIL-2R-spiked buffer samples establishing a detection limit of 25 pM. The performance of the new LFA was confirmed by analyzing urine samples of the 2nd and 3rd patient cohort with 35 KTRs with biopsy proven TCMRs, 3 KTRs diagnosed with borderline TCMR, 1 mixed AMR/TCMR rsp. AMR/borderline TCMR and 13 control patients with a rejection-free kidney graft proven by protocol biopsies. The new point-of-care assay showed a specificity of 84.6% and sensitivity of 87.5%, and a superior estimated glomerular filtration rate (eGFR) at the time point of biopsy (specificity 30.8%, sensitivity 85%).


Assuntos
Transplante de Rim , Anticorpos , Biópsia , Rejeição de Enxerto/diagnóstico , Humanos , Rim , Transplante de Rim/efeitos adversos , Linfócitos T
8.
Allergy ; 75(3): 576-587, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31512243

RESUMO

BACKGROUND: Hundreds of plant species release their pollen into the air every year during early spring. During that period, pollen allergic as well as non-allergic patients frequently present to doctors with severe respiratory tract infections. Our objective was therefore to assess whether pollen may interfere with antiviral immunity. METHODS: We combined data from real-life human exposure cohorts, a mouse model and human cell culture to test our hypothesis. RESULTS: Pollen significantly diminished interferon-λ and pro-inflammatory chemokine responses of airway epithelia to rhinovirus and viral mimics and decreased nuclear translocation of interferon regulatory factors. In mice infected with respiratory syncytial virus, co-exposure to pollen caused attenuated antiviral gene expression and increased pulmonary viral titers. In non-allergic human volunteers, nasal symptoms were positively correlated with airborne birch pollen abundance, and nasal birch pollen challenge led to downregulation of type I and -III interferons in nasal mucosa. In a large patient cohort, numbers of rhinoviruspositive cases were correlated with airborne birch pollen concentrations. CONCLUSION: The ability of pollen to suppress innate antiviral immunity, independent of allergy, suggests that high-risk population groups should avoid extensive outdoor activities when pollen and respiratory virus seasons coincide.


Assuntos
Imunidade Inata , Pólen/efeitos adversos , Vírus Sinciciais Respiratórios , Rhinovirus , Animais , Humanos , Interferons , Camundongos , Mucosa Nasal
9.
Am J Transplant ; 19(10): 2692-2704, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31062482

RESUMO

The role of endothelial cells in the pathophysiology of antibody-mediated rejection after renal transplantation has been widely investigated. We expand this scenario to the impact of epithelial cells on the microenvironment during rejection. Primary proximal tubular epithelial cells were stimulated via HLA class I, CD155 and CD166 based on their potential signal-transducing capacity to mediate back signaling after encounter with either T/NK cells or donor-specific antibodies. Upon crosslinking of these ligands with mAbs, PTEC secreted IL-6, CXCL1,8,10, CCL2, and sICAM-1. These proteins were also released by PTEC as consequence of a direct interaction with T/NK cells. Downmodulation of the receptor CD226 on effector cells confirmed the involvement of this receptor/ligand pair in back signaling. In vivo, CD155 and CD166 expression was detectable in proximal and distal tubuli of renal transplant biopsies, respectively. The composition of the protein microenvironment in these biopsies showed a substantial overlap with the PTEC response. Cluster and principal component analyses of the microenvironment separated unsuspicious from rejection biopsies and, furthermore, ABMR, TCMR, and borderline rejection. In conclusion, our results provide evidence that epithelial cells may contribute to the rejection process and pave the way to a better understanding of the pathomechanisms of kidney allograft rejection.


Assuntos
Células Endoteliais/imunologia , Rejeição de Enxerto/etiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Isoanticorpos/efeitos adversos , Transplante de Rim/efeitos adversos , Células T Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , Adolescente , Adulto , Idoso , Feminino , Seguimentos , Taxa de Filtração Glomerular , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Falência Renal Crônica/imunologia , Falência Renal Crônica/patologia , Falência Renal Crônica/cirurgia , Testes de Função Renal , Ligantes , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores de Células Matadoras Naturais/metabolismo , Fatores de Risco , Doadores de Tecidos , Transplante Homólogo , Adulto Jovem
10.
Appl Microbiol Biotechnol ; 99(2): 623-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432676

RESUMO

Hydrogels have become one of the most popular platforms for three-dimensional (3D) cultivation of mammalian cells. The enormous versatility of hydrogel materials makes it possible to design scaffolds with predefined mechanical properties, as well as with desired biofunctionality. 3D hydrogel constructs have been used for a variety of applications, including tissue engineering of microorgan systems, drug delivery, cytotoxicity testing, and drug screening. Moreover, 3D culture is applied for investigating cellular physiology, stem cell differentiation, and tumor models and for studying interaction mechanisms between the extracellular matrix and cells. In this paper, we review current examples of performance-based hydrogel design for 3D cell culture applications. A major emphasis is placed on a description of how standard analytical protocols and imaging techniques are being adapted to analysis of 3D cell culture in hydrogel systems.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Animais , Diferenciação Celular , Matriz Extracelular , Humanos , Mamíferos , Reologia , Engenharia Tecidual , Alicerces Teciduais
11.
Clin Transplant ; 28(4): 512-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24649873

RESUMO

BACKGROUND: Although major risk factors for post-transplant diabetes (PTDM) after kidney transplantation have been identified, a systematic study on the impact of rejection and rejection therapy is missing so far. METHODS: Five hundred and twenty-six kidney transplant recipients transplanted in the years 2000-2007 were included. PTDM was defined according to WHO guidelines, and patients' data were compared with special attention to protocol and for cause biopsies and rejection therapies. Survival analyses were made for graft loss and patient death. RESULTS: 16.7% of all patients developed PTDM. Among common risk factors as higher age, body mass index (BMI), and others, the factor "acute cellular rejections" was comparably most relevant with a hazard ratio of 3.7. Consequently, antirejective treatment with steroid pulses and conversion to tacrolimus was the factor with the highest relative risk for the onset of PTDM (RR 3.5). PTDM itself had no impact on graft or patients' survival, but the decreased graft survival in PTDM patients was dominantly influenced by the higher frequency of acute cellular rejections, and patients' survival was reduced due to higher age. CONCLUSION: Based upon a higher rate of acute rejections (AR), the necessity of frequent antirejective treatments was more relevant for the induction of PTDM than age or BMI.


Assuntos
Diabetes Mellitus/etiologia , Rejeição de Enxerto/prevenção & controle , Imunossupressores/efeitos adversos , Transplante de Rim , Complicações Pós-Operatórias/etiologia , Adulto , Idoso , Diabetes Mellitus/epidemiologia , Feminino , Seguimentos , Sobrevivência de Enxerto , Humanos , Imunossupressores/uso terapêutico , Incidência , Transplante de Rim/mortalidade , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Análise de Sobrevida , Resultado do Tratamento
12.
J Allergy Clin Immunol ; 132(3): 665-675.e8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23632299

RESUMO

BACKGROUND: Because TNF-α is increased in severe asthma, we hypothesized that TNF-α contributes to barrier dysfunction and cell activation in bronchial epithelial cells. We further hypothesized that src-family kinase inhibition would improve barrier function in healthy cells in the presence of TNF-α and directly in cultures of severe asthmatic cells where the barrier is disrupted. OBJECTIVES: We assessed the effect of TNF-α, with or without src-family kinase inhibitor SU6656, on barrier properties and cytokine release in differentiated human bronchial epithelial cultures. Further, we tested the effect of SU6656 on differentiated primary cultures from severe asthma. METHODS: Barrier properties of differentiated human bronchial epithelial air-liquid interface cultures from healthy subjects and subjects with severe asthma were assessed with transepithelial electrical resistance and fluorescent dextran passage. Proteins were detected by immunostaining or Western blot analysis and cytokines by immunoassay. Mechanisms were investigated with src kinase and other inhibitors. RESULTS: TNF-α lowered transepithelial electrical resistance and increased fluorescent dextran permeability, caused loss of occludin and claudins from tight junctions with redistribution of p120 catenin and E-cadherin from adherens junctions, and also increased endogenous TNF-α, IL-6, IL-1ß, IL-8, thymic stromal lymphoprotein, and pro-matrix metalloprotease 9 release. SU6656 reduced TNF-α-mediated paracellular permeability changes, restored occludin, p120, and E-cadherin and lowered autocrine TNF-α release. Importantly, SU6656 improved the barrier properties of severe asthmatic air-liquid interface cultures. Redistribution of E-cadherin and p120 was observed in bronchial biopsies from severe asthmatic airways. CONCLUSIONS: Inhibiting TNF-α or src kinases may be a therapeutic option to normalize barrier integrity and cytokine release in airway diseases associated with barrier dysfunction.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Quinases da Família src/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Brônquios/citologia , Caderinas/metabolismo , Cateninas/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Quinases da Família src/antagonistas & inibidores , delta Catenina
13.
Stem Cell Res Ther ; 15(1): 150, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783353

RESUMO

Mesenchymal stem/stromal cells (MSCs) are not only capable of self-renewal, trans-differentiation, homing to damaged tissue sites and immunomodulation by secretion of trophic factors but are also easy to isolate and expand. Because of these characteristics, they are used in numerous clinical trials for cell therapy including immune and neurological disorders, diabetes, bone and cartilage diseases and myocardial infarction. However, not all trials have successful outcomes, due to unfavourable microenvironmental factors and the heterogenous nature of MSCs. Therefore, genetic manipulation of MSCs can increase their prospect. Currently, most studies focus on single transfection with one gene. Even though the introduction of more than one gene increases the complexity, it also increases the effectivity as different mechanism are triggered, leading to a synergistic effect. In this review we focus on the methodology and efficiency of co-transfection, as well as the opportunities and pitfalls of these genetically engineered cells for therapy.


Assuntos
Terapia Genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Transfecção , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Transfecção/métodos , Animais
14.
3D Print Addit Manuf ; 11(1): 323-332, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389675

RESUMO

Modern 3D printing is a valuable tool for tissue engineering (TE), and the fabrication of complex geometries such as tubular scaffolds with adaptable structure, for example, as replacements for intestines, bronchi, esophagus, or vessels, could contribute to standardized procedures in the future of regenerative medicine. However, high-precision bioprinting of scaffolds for tubular TE applications remain a major challenge and is an arduous endeavor with currently available three-axis bioprinters, which are limited to planar, layer-by-layer printing processes. In this work, a novel, straightforward workflow for creating toolpaths and command sets for tubular scaffolds is presented. By combining a custom software application with commercial 3D design software, a comparatively large degree of design freedom was achieved while ensuring ease of use and extensibility for future research needs. As a hardware platform, two commercial 3D bioprinters were retrofitted with a rotary axis to accommodate cylindrical mandrels as print beds, overcoming the limitations of planar print beds. The printing process using the new method was evaluated in terms of the mechanical, actuation, and synchronization characteristics of the linear and rotating axes, as well as the stability of the printing process. In this context, it became clear that extrusion-based printing processes are very sensitive to positioning errors when used with small nozzles. Despite these technical difficulties, the new process can produce single-layer, multilayer, and multimaterial structures with a wide range of pore geometries. In addition, extrusion-based printing processes can be combined with melt electrowriting to produce durable scaffolds with features in the micrometer to millimeter range. Overall, the suitability of this setup for a wide range of TE applications has thus been demonstrated.

15.
Tissue Barriers ; : 2300580, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179897

RESUMO

Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.

16.
Eur Respir J ; 42(1): 87-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23143548

RESUMO

The airway epithelium forms a physical, chemical and immunological barrier against inhaled environmental substances. In asthma, these barrier properties are thought to be abnormal. In this study, we analysed the effect of grass pollen on the physical and immunological barrier properties of differentiated human primary bronchial epithelial cells. Following exposure to Timothy grass (Phleum pratense) pollen extract, the integrity of the physical barrier was not impaired as monitored by measuring the transepithelial resistance and immunofluorescence staining of tight junction proteins. In contrast, pollen exposure affected the immunological barrier properties by modulating vectorial mediator release. CXC chemokine ligand (CXCL)8/interleukin (IL)-8 showed the greatest increase in response to pollen exposure with preferential release to the apical compartment. Inhibition of the extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways selectively blocked apical CXCL8/IL-8 release via a post-transcriptional mechanism. Apical release of CC chemokine ligand (CCL)20/macrophage inflammatory protein-3α, CCL22/monocyte-derived chemokine and tumour necrosis factor-α was significantly increased only in severe asthma cultures, while CCL11/eotaxin-1 and CXCL10/interferon-γ-induced protein-10 were reduced in nonasthmatic cultures. The bronchial epithelial barrier modulates polarised release of mediators in response to pollen without direct effects on its physical barrier properties. The differential response of cells from normal and asthmatic donors suggests the potential for the bronchial epithelium to promote immune dysfunction in asthma.


Assuntos
Asma/imunologia , Brônquios/patologia , Células Epiteliais/patologia , Extratos Vegetais/química , Pólen/química , Alérgenos/química , Asma/metabolismo , Broncoscopia , Células Cultivadas , Quimiocinas/imunologia , Humanos , Inflamação , Interleucina-8/imunologia , Ligantes , Poaceae
17.
Eng Life Sci ; 23(2): 2200026, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751470

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a public crisis. Many medical and public institutions and businesses went into isolation in response to the pandemic. Because SARS-CoV-2 can spread irrespective of a patient's course of disease, these institutions' continued operation or reopening based on the assessment and control of virus spread can be supported by targeted population screening. For this purpose, virus testing in the form of polymerase chain reaction (PCR) analysis and antibody detection in blood can be central. Mobile SARS-CoV-2 screening facilities with a built-in biosafety level (BSL)-2 laboratory were set up to allow the testing offer to be brought close to the subject group's workplace. University staff members, their expertise, and already available equipment were used to implement and operate the screening facilities and a certified diagnostic laboratory. This operation also included specimen collection, transport, PCR and antibody analysis, and informing subjects as well as public health departments. Screening facilities were established at different locations such as educational institutions, nursing homes, and companies providing critical supply chains for health care. Less than 4 weeks after the first imposed lockdown in Germany, a first mobile testing station was established featuring a build-in laboratory with two similar stations commencing operation until June 2020. During the 15-month project period, approximately 33,000 PCR tests and close to 7000 antibody detection tests were collected and analyzed. The presented approach describes the required procedures that enabled the screening facilities and laboratories to collect and process several hundred specimens each day under difficult conditions. This report can assist others in establishing similar setups for pandemic scenarios.

18.
J Allergy Clin Immunol ; 127(2): 454-461.e1-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21281872

RESUMO

BACKGROUND: Water-soluble components from pollen modulate dendritic cell (DC) functions, such as IL-12 secretion and 3'-5'-cyclic adenosine monophosphate (cAMP) signaling and migration, possibly contributing to the establishment of a T(H)2-dominated immune response against pollen. Because these effects could not solely be attributed to the previously identified pollen-associated lipid mediators, the pollen metabolome was analyzed for candidate immunomodulatory substances. OBJECTIVE: We sought to perform an analysis of the effect of pollen-associated adenosine on DC function and T(H) cell differentiation. METHODS: Fractions of aqueous pollen extracts (APEs) were generated by means of ultrafiltration and were subjected simultaneously to biological tests and metabolome analysis (ultra-high-resolution mass spectrometry) and ultraperformance liquid chromatography. Effects of pollen-derived adenosine on monocyte-derived DC cAMP signaling, cytokine response, and capacity to differentiate T(H) cells were studied. RESULTS: The less than 3-kd fraction of APEs comprised thousands of substances, including adenosine in micromolar concentrations. Pollen-derived adenosine mediated A2 receptor-dependent induction of cAMP and inhibition of IL-12p70 in DCs. APEs digested with adenosine deaminase failed to mediate IL-12 inhibition. DCs of nonatopic donors exposed to APEs showed an adenosine-dependent reduced capacity to differentiate T(H)1 cells and an enhanced capacity to induce regulatory T cells and IL-10. DCs of atopic donors failed to induce IL-10 but instead induced IL-5 and IL-13. CONCLUSION: This study identifies adenosine out of thousands of metabolites as a potent immunoregulatory substance in pollen. It acts on the level of the DC, with differential effects in atopic and nonatopic donors.


Assuntos
Adenosina/fisiologia , Células Dendríticas/fisiologia , Metaboloma , Rinite Alérgica Sazonal/etiologia , Linfócitos T Auxiliares-Indutores/imunologia , Adulto , AMP Cíclico/biossíntese , Humanos , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-12/biossíntese , Receptores A2 de Adenosina/fisiologia , Rinite Alérgica Sazonal/imunologia , Linfócitos T Reguladores/fisiologia
19.
ACS Chem Biol ; 17(1): 129-137, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35018777

RESUMO

Renal rejection is a major incidence in patients after kidney transplantation and associated with allograft scarring and function loss, especially in antibody-mediated rejection. Regular clinical monitoring of kidney-transplanted patients is thus necessary, but measuring donor-specific antibodies is not always predictive, and graft biopsies are time-consuming and costly and may come up with a histological result unsuspicious for rejection. Therefore, a noninvasive diagnostic approach to estimate an increased probability of kidney graft rejection by measuring specific biomarkers is highly desired. The chemokine CXCL9 is described as an early indicator of rejection. In this work, we identified clickmers and an aptamer by split-combine click-SELEX (systematic evolution of ligands by exponential enrichment) that bind CXLC9 with high affinity. The aptamers recognize native CXCL9 and maintain binding properties under urine conditions. These features render the molecules as potential binding and detector probes for developing point-of-care devices, e.g., lateral flow assays, enabling the noninvasive monitoring of CXCL9 in renal allograft patients.


Assuntos
Quimiocina CXCL9/química , Química Click , Rejeição de Enxerto/metabolismo , Biomarcadores/metabolismo , Humanos , Ligantes , Ligação Proteica
20.
Eng Life Sci ; 22(3-4): 344-360, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382534

RESUMO

Conventional synthetic vascular grafts require ongoing anticoagulation, and autologous venous grafts are often not available in elderly patients. This review highlights the development of bioartificial vessels replacing brain-dead donor- or animal-deriving vessels with ongoing immune reactivity. The vision for such bio-hybrids exists in a combination of biodegradable scaffolds and seeding with immune-neutral cells, and here different cells sources such as autologous progenitor cells or stem cells are relevant. This kind of in situ tissue engineering depends on a suitable bioreactor system with elaborate monitoring systems, three-dimensional (3D) visualization and a potential of cell conditioning into the direction of the targeted vascular cell phenotype. Necessary bioreactor tools for dynamic and pulsatile cultivation are described. In addition, a concept for design of vasa vasorum is outlined, that is needed for sustainable nutrition of the wall structure in large caliber vessels. For scaffold design and cell adhesion additives, different materials and technologies are discussed. 3D printing is introduced as a relatively new field with promising prospects, for example, to create complex geometries or micro-structured surfaces for optimal cell adhesion and ingrowth in a standardized and custom designed procedure. Summarizing, a bio-hybrid vascular prosthesis from a controlled biotechnological process is thus coming more and more into view. It has the potential to withstand strict approval requirements applied for advanced therapy medicinal products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA