Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835446

RESUMO

Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes mellitus (DM) that accounts for around 2-5% of all types of diabetes. Autosomal dominant inheritance in pathogenic variations of 14 genes related to ß-cell functions can lead to monogenic types of diabetes. In Italy, GCK/MODY is the most frequent form and it is caused by mutations of the glucokinase (GCK). Patients with GCK/MODY usually have stable mild fasting hyperglycaemia with mildly elevated HbA1c levels and rarely need pharmacological treatment. Molecular analysis of the GCK coding exons was carried out by Sanger sequencing in eight Italian patients. All the probands were found to be heterozygous carriers of a pathogenic gross insertion/deletion c.1279_1358delinsTTACA; p.Ser426_Ala454delinsLeuGln. It was previously described for the first time by our group in a large cohort of Italian GCK/MODY patients. The higher levels of HbA1c (6.57% vs. 6.1%), and the higher percentage of patients requiring insulin therapy (25% vs. 2%) compared to the previously studied Italian patients with GCK/MODY, suggest that the mutation discovered could be responsible for a clinically worse form of GCK/MODY. Moreover, as all the patients carrying this variant share an origin from the same geographic area (Liguria), we postulate a possible founder effect and we propose to name it the "pesto" mutation.


Assuntos
Diabetes Mellitus Tipo 2 , Glucoquinase , Humanos , Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Hemoglobinas Glicadas/análise , Mutação
2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047546

RESUMO

S737F is a Cystic Fibrosis (CF) transmembrane conductance regulator (CFTR) missense variant. The aim of our study was to describe the clinical features of a cohort of individuals carrying this variant. In parallel, by exploiting ex vivo functional and molecular analyses on nasal epithelia derived from a subset of S737F carriers, we evaluated its functional impact on CFTR protein as well as its responsiveness to CFTR modulators. We retrospectively collected clinical data of all individuals bearing at least one S737F CFTR variant and followed at the CF Centre of Tuscany region (Italy). Nasal brushing was performed in cooperating individuals. At study end clinical data were available for 10 subjects (mean age: 14 years; range 1-44 years; 3 adult individuals). Five asymptomatic subjects had CF, 2 were CRMS/CFSPID and 3 had an inconclusive diagnosis. Ex vivo analysis on nasal epithelia demonstrated different levels of CF activity. In particular, epithelia derived from asymptomatic CF subjects and from one of the subjects with inconclusive diagnosis showed reduced CFTR activity that could be rescued by treatment with CFTR modulators. On the contrary, in the epithelia derived from the other two individuals with an inconclusive diagnosis, the CFTR-mediated current was similar to that observed in epithelia derived from healthy donors. In vitro functional and biochemical analysis on S737F-CFTR expressed in immortalized bronchial cells highlighted a modest impairment of the channel activity, that was improved by treatment with ivacaftor alone or in combination with tezacaftor/elexacaftor. Our study provide evidence towards the evaluation of CFTR function on ex vivo nasal epithelial cell models as a new assay to help clinicians to classify individuals, in presence of discordance between clinical picture, sweat test and genetic profile.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Adulto , Humanos , Adolescente , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/diagnóstico , Estudos Retrospectivos , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Mucosa Nasal , Linhagem Celular , Mutação
3.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328596

RESUMO

Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Alelos , Aminofenóis , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Combinação de Medicamentos , Humanos , Indóis , Mutação , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
4.
Mol Biol Rep ; 46(3): 3477-3485, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30847849

RESUMO

C3H10T1/2, a mouse mesenchymal stem cell line, is a well-known in vitro model of chondrogenesis that can be easily employed to recapitulate some of the mechanisms intervening in this process. Moreover, these cells can be used to validate the effect of candidate molecules identified by high throughput screening approaches applied to the development of targeted therapy for human disorders in which chondrogenic differentiation may be involved, as in conditions characterized by heterotopic endochondral bone formation. Chondrogenic differentiation of C3H10T1/2 cells can be monitored by applying quantitative polymerase chain reaction (qPCR), one of the most sensitive methods that allows detection of small dynamic changes in gene expression between samples obtained under different experimental conditions. In this work, we have used qPCR to monitor the expression of specific markers during chondrogenic differentiation of C3H10T1/2 cells in micromass cultures. Then we have applied the geNorm approach to identify the most stable reference genes suitable to get a robust normalization of the obtained expression data. Among 12 candidate reference genes (Ap3d1, Csnk2a2, Cdc40, Fbxw2, Fbxo38, Htatsf1, Mon2, Pak1ip1, Zfp91, 18S, ActB, GAPDH) we identified Mon2 and Ap3d1 as the most stable ones during chondrogenesis. ActB, GAPDH and 18S, the most commonly used in the literature, resulted to have an expression level too high compared to the differentiation markers (Sox9, Collagen type 2a1, Collagen type 10a1 and Collagen type 1a1), therefore are actually less recommended for these experimental conditions. In conclusion, we identified nine reference genes that can be equally used to obtain a robust normalization of the gene expression variation during the C3H10T1/2 chondrogenic differentiation.


Assuntos
Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Actinas/genética , Complexo 3 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Camundongos , Camundongos Endogâmicos C3H , ATPases Translocadoras de Prótons/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Transcriptoma
5.
Int J Mol Sci ; 19(4)2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29587443

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic condition characterized by progressive extra-skeletal ossification leading to cumulative and severe disability. FOP has an extremely variable and episodic course and can be induced by trauma, infections, iatrogenic harms, immunization or can occur in an unpredictable way, without any recognizable trigger. The causative gene is ACVR1, encoding the Alk-2 type I receptor for bone morphogenetic proteins (BMPs). The signaling is initiated by BMP binding to a receptor complex consisting of type I and II molecules and can proceed into the cell through two main pathways, a canonical, SMAD-dependent signaling and a p38-mediated cascade. Most FOP patients carry the recurrent R206H substitution in the receptor Glycine-Serine rich (GS) domain, whereas a few other mutations are responsible for a limited number of cases. Mutations cause a dysregulation of the downstream BMP-dependent pathway and make mutated ACVR1 responsive to a non-canonical ligand, Activin A. There is no etiologic treatment for FOP. However, many efforts are currently ongoing to find specific therapies targeting the receptor activity and the downstream aberrant pathway at different levels or targeting cellular components and/or processes that are important in modifying the local environment leading to bone neo-formation.


Assuntos
Receptores de Ativinas Tipo I/genética , Substituição de Aminoácidos , Miosite Ossificante/tratamento farmacológico , Receptores de Ativinas Tipo I/metabolismo , Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Ensaios Clínicos como Assunto , Reposicionamento de Medicamentos , Humanos , Miosite Ossificante/etiologia , Miosite Ossificante/genética , Transdução de Sinais/efeitos dos fármacos
6.
J Med Genet ; 53(12): 859-864, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27565519

RESUMO

BACKGROUND: Fibrodysplasia ossificans progressiva is an autosomal dominant disorder due to germline mutations of ACVR1/ALK2 causing progressive heterotopic endochondral ossifications. Evidence of central nervous system involvement has emerged only recently. METHODS: We performed an observational cross-sectional brain MRI study in 13 patients (8 females, mean age 20 years), examining the relationship of clinical and neuroradiological findings. RESULTS: All patients presented small asymptomatic lesions similar to hamartomas at the level of the dorsal medulla and ventral pons, associated with minor brainstem dysmorphisms and abnormal origin of the vestibulocochlear and facial nerves. The size of the brainstem lesions did not correlate with patient's age (p=0.061), age at first flare-up (p=0.733), severity of disability (p=0.194), history of head trauma (p=0.415) or hearing loss (p=0.237). The radiologic features and the absence of neurological symptoms were consistent with a benign process. Variable signal abnormalities and/or calcifications of the dentate nuclei were noted in all patients, while basal ganglia abnormalities were present in nine subjects. Brain calcifications positively correlated with patient's age (p<0.001) and severity of disability (p=0.002). CONCLUSIONS: Our data support the hypothesis that the effects of mutation of the ACVR1/ALK2 gene are extended to the central nervous system. Brainstem hamartomatous lesions and dysmorphisms, variably associated with dentate nucleus and basal ganglia signal abnormalities and/or calcifications, may represent useful disease hallmarks.


Assuntos
Receptores de Ativinas Tipo I/genética , Sistema Nervoso Central/patologia , Mutação de Sentido Incorreto , Miosite Ossificante/patologia , Adolescente , Adulto , Sistema Nervoso Central/metabolismo , Criança , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Adulto Jovem
7.
Hum Mol Genet ; 23(20): 5364-77, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24852373

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a disabling genetic disorder of progressive heterotopic ossification (HO). Here, we report a patient with an ultra-rare point mutation [c.619C>G, p.Q207E] located in a codon adjacent to the most common FOP mutation [c.617G>A, p.R206H] of Activin A Receptor, type 1 (ACVR1) and that affects the same intracellular amino acid position in the GS activation domain as the engineered constitutively active (c.a.) variant p.Q207D. It was predicted that both mutations at residue 207 have similar functional effects by introducing a negative charge. Transgenic p.Q207D-c.a. mice have served as a model for FOP HO in several in vivo studies. However, we found that the engineered ACVR1(Q207D-c.a.) is significantly more active than the classic FOP mutation ACVR1(R206H) when overexpressed in chicken limbs and in differentiation assays of chondrogenesis, osteogenesis and myogenesis. Importantly, our studies reveal that the ACVR1(Q207E) resembles the classic FOP receptor in these assays, not the engineered ACVR1(Q207D-c.a.). Notably, reporter gene assays revealed that both naturally occurring FOP receptors (ACVR1(R206H) and ACVR1(Q207E)) were activated by BMP7 and were sensitive to deletion of the ligand binding domain, whereas the engineered ACVR1(Q207D-c.a.) exhibited ligand independent activity. We performed an in silico analysis and propose a structural model for p.Q207D-c.a. that irreversibly relocates the GS domain into an activating position, where it becomes ligand independent. We conclude that the engineered p.Q207D-c.a. mutation has severe limitations as a model for FOP, whereas the naturally occurring mutations p.R206H and p.Q207E facilitate receptor activation, albeit in a reversible manner.


Assuntos
Receptores de Ativinas Tipo I/química , Receptores de Ativinas Tipo I/genética , Músculo Esquelético/patologia , Miosite Ossificante/genética , Miosite Ossificante/patologia , Mutação Puntual , Sequência de Aminoácidos , Animais , Galinhas , Criança , Modelos Animais de Doenças , Variação Genética , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Membro Posterior/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Células NIH 3T3 , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência
9.
Gynecol Endocrinol ; 32(1): 14-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26572316

RESUMO

We report on a 31-year old female who presented at genetic counseling for a small uterus, secondary amenorrhea and sterility. Gonadotropic hormone levels were low, suggesting a Hypogonadotropic Hypogonadism (HH) condition. Cytogenetic analysis demonstrated the presence of Trisomy X associated to an interstitial deletion of chromosome 4q13.2, resulting in the complete loss of a copy of the GNRHR gene. As GNRHR is known to be responsible for an autosomal recessive form of HH, we checked the status of the undeleted allele and we found the Q106R substitution. In conclusion, the results of our cytogenetic and molecular analyses have allowed us to clarify the etiology of the patient's condition.


Assuntos
Amenorreia/genética , Hipogonadismo/genética , Infertilidade Feminina/genética , Receptores LHRH/genética , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Trissomia/genética , Útero/anormalidades , Adulto , Amenorreia/metabolismo , Amenorreia/fisiopatologia , Cromossomos Humanos Par 4/genética , Cromossomos Humanos X/genética , Cromossomos Humanos X/metabolismo , Feminino , Deleção de Genes , Genótipo , Gonadotropinas/metabolismo , Humanos , Hipogonadismo/metabolismo , Hipogonadismo/fisiopatologia , Infertilidade Feminina/metabolismo , Infertilidade Feminina/fisiopatologia , Cariótipo , Fenótipo , Análise de Sequência de DNA , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/metabolismo , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/fisiopatologia , Trissomia/fisiopatologia
10.
Am J Med Genet A ; 167A(11): 2817-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26239063

RESUMO

Fibrodyspasia ossificans progressiva is an autosomal dominant disease due to activating mutations in activin receptor type IA and characterized by progressive heterotopic ossification. Recently, the same non-synonymous heterozygous somatic mutations of ACVR1 have been identified in brain biopsies or autopsy of 24-27% of patients with a rare cerebral tumor, the diffuse intrinsic pontine glioma. We report the first case of a patient with FOP with incidental findings of an abnormal soft tissue mass surrounding the brainstem and causing obstructive hydrocephalus, associated with bilateral dentate lesions. Clinico-radiological course during 10 years of follow-up was consistent with a benign lesion, excluding an oncogenic role of ACVR1 mutations.


Assuntos
Sistema Nervoso Central/patologia , Miosite Ossificante/patologia , Encéfalo/patologia , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética
12.
Hum Mutat ; 34(6): 894-904, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23463580

RESUMO

TP63 germ-line mutations are responsible for a group of human ectodermal dysplasia syndromes, underlining the key role of P63 in the development of ectoderm-derived tissues. Here, we report the identification of two TP63 alleles, G134V (p.Gly173Val) and insR155 (p.Thr193_Tyr194insArg), associated to ADULT and EEC syndromes, respectively. These alleles, along with previously identified G134D (p.Gly173Asp) and R204W (p.Arg243Trp), were functionally characterized in yeast, studied in a mammalian cell line and modeled based on the crystal structure of the P63 DNA-binding domain. Although the p.Arg243Trp mutant showed both complete loss of transactivation function and ability to interfere over wild-type P63, the impact of p.Gly173Asp, p.Gly173Val, and p.Thr193_Tyr194insArg varied depending on the response element (RE) tested. Interestingly, p.Gly173Asp and p.Gly173Val mutants were characterized by a severe defect in transactivation along with interfering ability on two DN-P63α-specific REs derived from genes closely related to the clinical manifestations of the TP63-associated syndromes, namely PERP and COL18A1. The modeling of the mutations supported the distinct functional effect of each mutant. The present results highlight the importance of integrating different functional endpoints that take in account the features of P63 proteins' target sequences to examine the impact of TP63 mutations and the associated clinical variability.


Assuntos
Anodontia/genética , Mama/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Displasia Ectodérmica/genética , Obstrução dos Ductos Lacrimais/genética , Deformidades Congênitas dos Membros/genética , Mutação , Unhas Malformadas/genética , Transtornos da Pigmentação/genética , Elementos de Resposta , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Alelos , Substituição de Aminoácidos , Anodontia/metabolismo , Proteínas Reguladoras de Apoptose/genética , Mama/metabolismo , Linhagem Celular , Fenda Labial/metabolismo , Fissura Palatina/metabolismo , Displasia Ectodérmica/metabolismo , Regulação da Expressão Gênica , Estudos de Associação Genética , Mutação em Linhagem Germinativa , Células HCT116 , Humanos , Obstrução dos Ductos Lacrimais/metabolismo , Deformidades Congênitas dos Membros/metabolismo , Unhas Malformadas/metabolismo , Fenótipo , Transtornos da Pigmentação/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Leveduras/genética , Leveduras/metabolismo , Proteína X Associada a bcl-2/genética
13.
Life (Basel) ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37240725

RESUMO

Next-generation sequencing (NGS) has revolutionized the field of genomics and created new opportunities for basic research. We described the strategy for the NGS validation of the "dysglycaemia panel" composed by 44 genes related to glucose metabolism disorders (MODY, Wolfram syndrome) and familial renal glycosuria using Ion AmpliSeq technology combined with Ion-PGM. Anonymized DNA of 32 previously genotyped cases with 33 different variants were used to optimize the methodology. Standard protocol was used to generate the primer design, library, template preparation, and sequencing. Ion Reporter tool was used for data analysis. In all the runs, the mean coverage was over 200×. Twenty-nine out of thirty three variants (96.5%) were detected; four frameshift variants were missed. All point mutations were detected with high sensitivity. We identified three further variants of unknown significance in addition to pathogenic mutations previously identified by Sanger sequencing. The NGS panel allowed us to identify pathogenic variants in multiple genes in a short time. This could help to identify several defects in children and young adults that have to receive the genetic diagnosis necessary for optimal treatment. In order not to lose any pathogenic variants, Sanger sequencing is included in our analytical protocol to avoid missing frameshift variants.

14.
J Cyst Fibros ; 22(3): 525-537, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36543707

RESUMO

BACKGROUND: Cystic fibrosis is caused by mutations impairing expression, trafficking, stability and/or activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The G1244E mutation causes a severe gating defect that it is not completely rescued by ivacaftor but requires the use of a second compound (a co-potentiator). Recently, it has been proposed that the corrector elexacaftor may act also as a co-potentiator. METHODS: By using molecular, biochemical and functional analyses we performed an in-depth characterization of the G1244E-CFTR mutant in heterologous and native cell models. RESULTS: Our studies demonstrate that processing and function of the mutant protein, as well as its pharmacological sensitivity, are markedly dependent on cell background. In heterologous expression systems, elexacaftor mainly acted on G1244E-CFTR as a co-potentiator, thus ameliorating the gating defect. On the contrary, in the native nasal epithelial cell model, elexacaftor did not act as a co-potentiator, but it increased mature CFTR expression possibly by improving mutant's defective stability at the plasma membrane. CONCLUSIONS: Our study highlights the importance of the cell background in the evaluation of CFTR modulator effects. Further, our results draw attention to the need for the development of novel potentiators having different mechanisms with respect to ivacaftor to improve channel activity for mutants with severe gating defect.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminofenóis/farmacologia , Benzodioxóis/farmacologia , Mutação
15.
Birth Defects Res ; 114(12): 674-681, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35751431

RESUMO

INTRODUCTION: PBX1 encodes the pre-B cell leukemia factor 1, a Three Amino acid Loop Extension (TALE) transcription factor crucial to regulate basic developmental processes. PBX1 loss-of-function variants have been initially described in association with renal malformations in both isolated and syndromic forms. CASE REPORT: Herein, we report a male infant presenting multiple organ malformations (cleidosternal dysostosis, micrognathia, left lung hypoplasia, wide interatrial defect, pulmonary hypertension, total anomalous pulmonary venous return, intestinal malrotation) and carrying the heterozygous de novo c.868C > T (p.Arg290Trp) variant in PBX1. This novel variant affects the highly conserved homeodomain of the protein, leading to a non-conservative substitution and consequently altering its tridimensional structure and DNA-binding capacity. CONCLUSION: So far, PBX1 has been reported in association with a broad spectrum of renal anomalies. However, given the role of this gene in many different developing processes, whole-exome sequencing can detect mutations in PBX1 even in patients with different phenotypes, not necessarily involving the renal primordium. This report presents a novel PBX1 variant with a predicted strong deleterious effect. The mutation leads to a non-conservative substitution in a very highly conserved domain of the protein, thus altering its tertiary structure and DNA-binding capacity.


Assuntos
Anormalidades Urogenitais , DNA , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Mutação , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética
16.
Biomedicines ; 9(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562470

RESUMO

Basic research in Fibrodysplasia Ossificans Progressiva (FOP) was carried out in the various fields involved in the disease pathophysiology and was important for designing therapeutic approaches, some of which were already developed as ongoing or planned clinical trials. Genetic research was fundamental in identifying the FOP causative mutation, and the astonishing progress in technologies for genomic analysis, coupled to related computational methods, now make possible further research in this field. We present here a review of molecular and cellular factors which could explain why a single mutation, the R206H in the ACVR1 gene, is absolutely prevalent in FOP patients. We also address the mechanisms by which FOP expressivity could be modulated by cis-acting variants in the ACVR1 genomic region in human chromosome 2q. Finally, we also discuss the general issue of genetic modifiers in FOP.

17.
Mol Genet Genomic Med ; 9(10): e1774, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347384

RESUMO

BACKGROUND: Fibrodysplasia Ossificans Progressiva (FOP) is a rare autosomal dominant disease characterized by congenital malformation of the great toes and progressive heterotopic ossification of soft tissues leading to cumulative disability. The genetic cause of FOP are mutations in the ACVR1 gene that encodes a type I receptor of Bone Morphogenetic Proteins. The most recurrent mutation in FOP patients is R206H affecting the Glycine-Serine rich domain and causing the hyper-activation of the receptor and the responsivity to the non-canonical ligand, Activin A. In the present study, we described a 3-years old child with early and highly suggestive clinical features of FOP who was found negative for the recurrent p.R206H substitution. METHODS: Molecular screening of the whole ACVR1 coding sequence and functional characterization in transfection-based assays. RESULTS AND CONCLUSIONS: We identified a novel, de novo variant in the fifth ACVR1 coding exon (NM_001111067.4:c.772A>T; NP_001104537.1:p.(R258W)). This substitution, never reported in association with FOP, affects a conserved arginine residue in the kinase domain of the protein. In silico analysis predicted the pathogenicity of this substitution, demonstrated by in vitro assays showing that the p.R258W ACVR1 mutated receptor acquires the ability to transduce the aberrant Activin A-mediated signaling, as observed for the gene variants associated with FOP.


Assuntos
Receptores de Ativinas Tipo I/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Miosite Ossificante/diagnóstico , Miosite Ossificante/genética , Alelos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Pré-Escolar , Genótipo , Humanos , Masculino , Radiografia
18.
Genes (Basel) ; 12(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672023

RESUMO

P53, P63, and P73 proteins belong to the P53 family of transcription factors, sharing a common gene organization that, from the P1 and P2 promoters, produces two groups of mRNAs encoding proteins with different N-terminal regions; moreover, alternative splicing events at C-terminus further contribute to the generation of multiple isoforms. P53 family proteins can influence a plethora of cellular pathways mainly through the direct binding to specific DNA sequences known as response elements (REs), and the transactivation of the corresponding target genes. However, the transcriptional activation by P53 family members can be regulated at multiple levels, including the DNA topology at responsive promoters. Here, by using a yeast-based functional assay, we evaluated the influence that a G-quadruplex (G4) prone sequence adjacent to the p53 RE derived from the apoptotic PUMA target gene can exert on the transactivation potential of full-length and N-terminal truncated P53 family α isoforms (wild-type and mutant). Our results show that the presence of a G4 prone sequence upstream or downstream of the P53 RE leads to significant changes in the relative activity of P53 family proteins, emphasizing the potential role of structural DNA features as modifiers of P53 family functions at target promoter sites.


Assuntos
DNA/genética , Quadruplex G , Proteínas de Membrana/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , DNA/ultraestrutura , Humanos , Proteínas de Membrana/ultraestrutura , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Elementos de Resposta/genética , Saccharomyces cerevisiae/genética , Proteína Tumoral p73/ultraestrutura , Proteína Supressora de Tumor p53/ultraestrutura
19.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919865

RESUMO

Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in NF1 and characterized by a heterogeneous phenotypic presentation. Relevant genotype-phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1. Of these, 365 subjects fulfilled ≥2 NIH criteria, including 235 pediatric patients. Genetic testing was performed through cDNA-based sequencing, Next Generation Sequencing (NGS), and Multiplex Ligation-dependent Probe Amplification (MLPA). Uni- and multivariate statistical analysis was used to investigate genotype-phenotype correlations. Among patients fulfilling ≥ 2 NIH criteria, causative single nucleotide variants (SNVs) and copy number variations (CNVs) were detected in 267/365 (73.2%) and 20/365 (5.5%) cases. Missense variants negatively correlated with neurofibromas (p = 0.005). Skeletal abnormalities were associated with whole gene deletions (p = 0.05) and frameshift variants (p = 0.006). The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations (p = 0.031), whereas Lisch nodules (p = 0.05) and endocrinological disorders (p = 0.043) were associated with the c.6855C>A; p.(Y2285*) variant. We identified novel NF1 genotype-phenotype correlations and provided an overview of known associations, supporting their potential relevance in the implementation of patient management.

20.
Front Endocrinol (Lausanne) ; 12: 732728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858325

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After this, the pathophysiology of FOP has been further elucidated through the efforts of research groups worldwide. In 2015, a workshop was held to gather these groups and discuss the new challenges in FOP research. Here we present an overview and update on these topics.


Assuntos
Endocrinologia/tendências , Miosite Ossificante , Congressos como Assunto , Endocrinologia/métodos , Prova Pericial/tendências , História do Século XXI , Humanos , Mutação/fisiologia , Miosite Ossificante/diagnóstico , Miosite Ossificante/etiologia , Miosite Ossificante/patologia , Miosite Ossificante/terapia , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA