RESUMO
Studies of long-lived individuals have revealed few genetic mechanisms for protection against age-associated disease. Therefore, we pursued genome sequencing of a related phenotype-healthy aging-to understand the genetics of disease-free aging without medical intervention. In contrast with studies of exceptional longevity, usually focused on centenarians, healthy aging is not associated with known longevity variants, but is associated with reduced genetic susceptibility to Alzheimer and coronary artery disease. Additionally, healthy aging is not associated with a decreased rate of rare pathogenic variants, potentially indicating the presence of disease-resistance factors. In keeping with this possibility, we identify suggestive common and rare variant genetic associations implying that protection against cognitive decline is a genetic component of healthy aging. These findings, based on a relatively small cohort, require independent replication. Overall, our results suggest healthy aging is an overlapping but distinct phenotype from exceptional longevity that may be enriched with disease-protective genetic factors. VIDEO ABSTRACT.
Assuntos
Envelhecimento/genética , Estudo de Associação Genômica Ampla , Longevidade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Envelhecimento Cognitivo , Estudos de Coortes , Doença da Artéria Coronariana/genética , Feminino , Predisposição Genética para Doença , Humanos , MasculinoRESUMO
Importance: VEXAS (vacuoles, E1-ubiquitin-activating enzyme, X-linked, autoinflammatory, somatic) syndrome is a disease with rheumatologic and hematologic features caused by somatic variants in UBA1. Pathogenic variants are associated with a broad spectrum of clinical manifestations. Knowledge of prevalence, penetrance, and clinical characteristics of this disease have been limited by ascertainment biases based on known phenotypes. Objective: To determine the prevalence of pathogenic variants in UBA1 and associated clinical manifestations in an unselected population using a genomic ascertainment approach. Design, Setting, and Participants: This retrospective observational study evaluated UBA1 variants in exome data from 163â¯096 participants within the Geisinger MyCode Community Health Initiative. Clinical phenotypes were determined from Geisinger electronic health record data from January 1, 1996, to January 1, 2022. Exposures: Exome sequencing was performed. Main Outcomes and Measures: Outcome measures included prevalence of somatic UBA1 variation; presence of rheumatologic, hematologic, pulmonary, dermatologic, and other findings in individuals with somatic UBA1 variation on review of the electronic health record; review of laboratory data; bone marrow biopsy pathology analysis; and in vitro enzymatic assays. Results: In 163â¯096 participants (mean age, 52.8 years; 94% White; 61% women), 11 individuals harbored likely somatic variants at known pathogenic UBA1 positions, with 11 of 11 (100%) having clinical manifestations consistent with VEXAS syndrome (9 male, 2 female). A total of 5 of 11 individuals (45%) did not meet criteria for rheumatologic and/or hematologic diagnoses previously associated with VEXAS syndrome; however, all individuals had anemia (hemoglobin: mean, 7.8 g/dL; median, 7.5 g/dL), which was mostly macrocytic (10/11 [91%]) with concomitant thrombocytopenia (10/11 [91%]). Among the 11 patients identified, there was a pathogenic variant in 1 male participant prior to onset of VEXAS-related signs or symptoms and 2 female participants had disease with heterozygous variants. A previously unreported UBA1 variant (c.1861A>T; p.Ser621Cys) was found in a symptomatic patient, with in vitro data supporting a catalytic defect and pathogenicity. Together, disease-causing UBA1 variants were found in 1 in 13â¯591 unrelated individuals (95% CI, 1:7775-1:23â¯758), 1 in 4269 men older than 50 years (95% CI, 1:2319-1:7859), and 1 in 26â¯238 women older than 50 years (95% CI, 1:7196-1:147â¯669). Conclusions and Relevance: This study provides an estimate of the prevalence and a description of the clinical manifestations of UBA1 variants associated with VEXAS syndrome within a single regional health system in the US. Additional studies are needed in unselected and genetically diverse populations to better define general population prevalence and phenotypic spectrum.
Assuntos
Síndromes Mielodisplásicas , Dermatopatias Genéticas , Enzimas Ativadoras de Ubiquitina , Feminino , Humanos , Masculino , Biópsia , Registros Eletrônicos de Saúde , Prevalência , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/epidemiologia , Síndromes Mielodisplásicas/genética , Enzimas Ativadoras de Ubiquitina/genética , Mutação , Estudos Retrospectivos , Exoma , Pessoa de Meia-Idade , Dermatopatias Genéticas/complicações , Dermatopatias Genéticas/diagnóstico , Dermatopatias Genéticas/epidemiologia , Dermatopatias Genéticas/genética , Estados Unidos/epidemiologiaRESUMO
Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.
Assuntos
Predisposição Genética para Doença/genética , Nascimento Prematuro/genética , Metilação de DNA/genética , Feminino , Genômica/métodos , Humanos , Recém-Nascido , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Sequenciamento Completo do Genoma/métodosRESUMO
PURPOSE: Clinical exome and gene panel testing can provide molecular diagnoses for patients with rare Mendelian disorders, but for many patients these tests are nonexplanatory. We investigated whether interrogation of alternative transcripts in known disease genes could provide answers for additional patients. METHODS: We integrated alternative transcripts for known neonatal epilepsy genes with RNA-Seq data to identify brain-expressed coding regions that are not evaluated by popular neonatal epilepsy clinical gene panel and exome tests. RESULTS: We found brain-expressed alternative coding regions in 89 (30%) of 292 neonatal epilepsy genes. The 147 regions encompass 15,713 bases that are noncoding in the primary transcripts analyzed by the clinical tests. Alternative coding regions from at least 5 genes carry reported pathogenic variants. Three candidate variants in these regions were identified in public exome data from 337 epilepsy patients. Incorporating alternative transcripts into the analysis of neonatal epilepsy genes in 44 patient genomes identified the pathogenic variant for the epilepsy case and 2 variants of uncertain significance (VUS) among the 43 control cases. CONCLUSION: Assessment of alternative transcripts in exon-based clinical genetic tests, including gene panel, exome, and genome sequencing, may provide diagnoses for patients for whom standard testing is unrevealing, without introducing many VUS.
Assuntos
Epilepsia Neonatal Benigna/diagnóstico , Testes Genéticos/métodos , Análise de Sequência de DNA/métodos , Estudos de Casos e Controles , Bases de Dados Genéticas , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia Neonatal Benigna/genética , Exoma/genética , Éxons/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Recém-Nascido , Masculino , Mutação , Sequenciamento do Exoma/métodosRESUMO
Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5' region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743-1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway.
Assuntos
Anormalidades Múltiplas/genética , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Mutação/genética , Receptor Notch1/genética , Dermatoses do Couro Cabeludo/congênito , Adolescente , Adulto , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Linhagem , Dermatoses do Couro Cabeludo/genética , Dermatoses do Couro Cabeludo/patologia , Adulto JovemRESUMO
PurposeImmunodeficiency screening has been added to many state-directed newborn screening programs. The current methodology is limited to screening for severe T-cell lymphopenia disorders. We evaluated the potential of genomic sequencing to augment current newborn screening for immunodeficiency, including identification of non-T cell disorders.MethodsWe analyzed whole-genome sequencing (WGS) and clinical data from a cohort of 1,349 newborn-parent trios by genotype-first and phenotype-first approaches. For the genotype-first approach, we analyzed predicted protein-impacting variants in 329 immunodeficiency-related genes in the WGS data. As a phenotype-first approach, electronic health records were used to identify children with clinical features suggestive of immunodeficiency. Genomes of these children and their parents were analyzed using a separate pipeline for identification of candidate pathogenic variants for rare Mendelian disorders.ResultsWGS provides adequate coverage for most known immunodeficiency-related genes. 13,476 distinct variants and 8,502 distinct predicted protein-impacting variants were identified in this cohort; five individuals carried potentially pathogenic variants requiring expert clinical correlation. One clinically asymptomatic individual was found genomically to have complement component 9 deficiency. Of the symptomatic children, one was molecularly identified as having an immunodeficiency condition and two were found to have other molecular diagnoses.ConclusionNeonatal genomic sequencing can potentially augment newborn screening for immunodeficiency.
Assuntos
Síndromes de Imunodeficiência/epidemiologia , Síndromes de Imunodeficiência/genética , Triagem Neonatal , Sequenciamento Completo do Genoma , Biologia Computacional/métodos , Curadoria de Dados , Feminino , Testes Genéticos , Genótipo , Humanos , Síndromes de Imunodeficiência/diagnóstico , Recém-Nascido , Masculino , Triagem Neonatal/métodos , FenótipoRESUMO
BACKGROUND & AIMS: DNA structural lesions are prevalent in sporadic colorectal cancer. Therefore, we proposed that gene variants that predispose to DNA double-strand breaks (DSBs) would be found in patients with familial colorectal carcinomas of an undefined genetic basis (UFCRC). METHODS: We collected primary T cells from 25 patients with UFCRC and matched patients without colorectal cancer (controls) and assayed for DSBs. We performed exome sequence analyses of germline DNA from 20 patients with UFCRC and 5 undiagnosed patients with polyposis. The prevalence of identified variants in genes linked to DNA integrity was compared with that of individuals without a family history of cancer. The effects of representative variants found to be associated with UFCRC was confirmed in functional assays with HCT116 cells. RESULTS: Primary T cells from most patients with UFCRC had increased levels of the DSB marker γ(phosphorylated)histone2AX (γH2AX) after treatment with DNA damaging agents, compared with T cells from controls (P < .001). Exome sequence analysis identified a mean 1.4 rare variants per patient that were predicted to disrupt functions of genes relevant to DSBs. Controls (from public databases) had a much lower frequency of variants in the same genes (P < .001). Knockdown of representative variant genes in HCT116 CRC cells increased γH2AX. A detailed analysis of immortalized patient-derived B cells that contained variants in the Werner syndrome, RecQ helicase-like gene (WRN, encoding T705I), and excision repair cross-complementation group 6 (ERCC6, encoding N180Y) showed reduced levels of these proteins and increased DSBs, compared with B cells from controls. This phenotype was rescued by exogenous expression of WRN or ERCC6. Direct analysis of the recombinant variant proteins confirmed defective enzymatic activities. CONCLUSIONS: These results provide evidence that defects in suppression of DSBs underlie some cases of UFCRC; these can be identified by assays of circulating lymphocytes. We specifically associated UFCRC with variants in WRN and ERCC6 that reduce the capacity for repair of DNA DSBs. These observations could lead to a simple screening strategy for UFCRC, and provide insight into the pathogenic mechanisms of colorectal carcinogenesis.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Quebras de DNA de Cadeia Dupla , Variação Genética , Linfócitos T/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Bases de Dados Genéticas , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Exoma , Feminino , Frequência do Gene , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Instabilidade Genômica , Células HCT116 , Hereditariedade , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênicos/farmacologia , Fenótipo , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , RecQ Helicases/genética , RecQ Helicases/metabolismo , Análise de Sequência de DNA , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transfecção , Regulação para Cima , Helicase da Síndrome de WernerRESUMO
PURPOSE: To assess the potential of whole-genome sequencing (WGS) to replicate and augment results from conventional blood-based newborn screening (NBS). METHODS: Research-generated WGS data from an ancestrally diverse cohort of 1,696 infants and both parents of each infant were analyzed for variants in 163 genes involved in disorders included or under discussion for inclusion in US NBS programs. WGS results were compared with results from state NBS and related follow-up testing. RESULTS: NBS genes are generally well covered by WGS. There is a median of one (range: 0-6) database-annotated pathogenic variant in the NBS genes per infant. Results of WGS and NBS in detecting 28 state-screened disorders and four hemoglobin traits were concordant for 88.6% of true positives (n = 35) and 98.9% of true negatives (n = 45,757). Of the five infants affected with a state-screened disorder, WGS identified two whereas NBS detected four. WGS yielded fewer false positives than NBS (0.037 vs. 0.17%) but more results of uncertain significance (0.90 vs. 0.013%). CONCLUSION: WGS may help rule in and rule out NBS disorders, pinpoint molecular diagnoses, and detect conditions not amenable to current NBS assays.
Assuntos
Predisposição Genética para Doença , Genoma Humano , Triagem Neonatal/métodos , Análise de Sequência de DNA/métodos , Estudos de Coortes , Feminino , Variação Genética , Humanos , Recém-Nascido , Masculino , Sensibilidade e EspecificidadeRESUMO
Rubinstein-Taybi syndrome (RSTS) can be caused by heterozygous mutations or deletions involving CREBBP or, less commonly, EP300. To date, only 15 patients with EP300 mutations have been clinically described. Frequently reported manifestations in these patients include characteristic facial and limb features, varying degrees of neurocognitive dysfunction, and maternal preeclampsia. Other congenital anomalies are less frequently reported. We describe a child found to have a de novo EP300 mutation (c.4933C>T, predicted to result in p.Arg1645X) through research-based whole-genome sequencing of the family trio. The child's presentation involved dysmorphic features as well as unilateral renal agenesis, a myelomeningocele, and minor genitourinary anomalies. The involvement of congenital anomalies in all 16 clinically described patients with EP300 mutations (25% of which have been identified by "hypothesis free" methods, including microarray, exome, and whole-genome sequencing) is reviewed. In summary, genitourinary anomalies have been identified in 38%, cardiovascular anomalies in 25%, spinal/vertebral anomalies in 19%, other skeletal anomalies in 19%, brain anomalies in 13%, and renal anomalies in 6%. Our patient expands the phenotypic spectrum in EP300-related RSTS; this case demonstrates the evolving practice of clinical genomics related to increasing availability of genomic sequencing methods.
Assuntos
Proteína p300 Associada a E1A/genética , Mutação , Síndrome de Rubinstein-Taybi/genética , Anormalidades Urogenitais/genética , Sequência de Bases , Mapeamento Cromossômico , Exoma/genética , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Gravidez , Radiografia , Síndrome de Rubinstein-Taybi/diagnóstico por imagem , Síndrome de Rubinstein-Taybi/etiologia , Síndrome de Rubinstein-Taybi/fisiopatologia , Deleção de Sequência , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiopatologia , Anormalidades Urogenitais/fisiopatologiaRESUMO
We describe cell type-specific significance analysis of microarrays (csSAM) for analyzing differential gene expression for each cell type in a biological sample from microarray data and relative cell-type frequencies. First, we validated csSAM with predesigned mixtures and then applied it to whole-blood gene expression datasets from stable post-transplant kidney transplant recipients and those experiencing acute transplant rejection, which revealed hundreds of differentially expressed genes that were otherwise undetectable.
Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Rejeição de Enxerto/sangue , Rejeição de Enxerto/genética , Humanos , Transplante de Rim , Modelos Lineares , RatosRESUMO
Osteogenesis imperfecta (OI), also known as brittle bone disease, is a clinically and genetically heterogeneous disorder primarily characterized by susceptibility to fracture. Although OI generally results from mutations in the type I collagen genes, COL1A1 and COL1A2, the relationship between genotype and phenotype is not yet well understood. To provide additional data for genotype-phenotype analyses and to determine the proportion of mutations in the type I collagen genes among subjects with lethal forms of OI, we sequenced the coding and exon-flanking regions of COL1A1 and COL1A2 in a cohort of 63 subjects with OI type II, the perinatal lethal form of the disease. We identified 61 distinct heterozygous mutations in type I collagen, including five non-synonymous rare variants of unknown significance, of which 43 had not been seen previously. In addition, we found 60 SNPs in COL1A1, of which 17 were not reported previously, and 82 in COL1A2, of which 18 are novel. In three samples without collagen mutations, we found inactivating mutations in CRTAP and LEPRE1, suggesting a frequency of these recessive mutations of approximately 5% in OI type II. A computational model that predicts the outcome of substitutions for glycine within the triple helical domain of collagen alpha1(I) chains predicted lethality with approximately 90% accuracy. The results contribute to the understanding of the etiology of OI by providing data to evaluate and refine current models relating genotype to phenotype and by providing an unbiased indication of the relative frequency of mutations in OI-associated genes.
Assuntos
Colágeno Tipo I/genética , Colágeno/genética , Proteínas da Matriz Extracelular/genética , Glicoproteínas de Membrana/genética , Mutação , Osteogênese Imperfeita/genética , Polimorfismo Genético , Proteoglicanas/genética , Feto Abortado/metabolismo , Estudos de Coortes , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Proteínas da Matriz Extracelular/metabolismo , Feminino , Genótipo , Humanos , Recém-Nascido , Masculino , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares , Osteogênese Imperfeita/embriologia , Osteogênese Imperfeita/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Prolil Hidroxilases , Proteoglicanas/metabolismoRESUMO
Fibrillar collagens are ubiquitous proteins essential for the structural integrity of bones, skin, blood vessels, and other tissues. Mutations in collagen genes result in disorders including osteogenesis imperfecta, chondrodysplasias, and Ehlers-Danlos syndromes, but the molecular basis for the heterogeneity of clinical phenotypes is not well understood. A more complete understanding of the relationship between sequence and phenotype requires synthesis of multiple facets of collagen structure and function. To facilitate such an analysis, we developed COLdb, a freely available database integrating collagen biological and physicochemical properties with known variants. A Web-based, interactive, graphical user interface displays the data as annotations on the collagen protein sequences. Collagen gene-level data are provided as custom tracks for display in the UCSC genome browser. COLdb currently includes 35,582 data points spanning collagen types I, II, and III, and, importantly, users can add their own data to the display. The database is the first comprehensive integration of disparate functional information on the three major fibrillar collagens, and the first electronic collection of mutations in the COL2A1 gene.
Assuntos
Bases de Dados Genéticas , Colágenos Fibrilares/genética , Acesso à Informação , Colágeno Tipo II/genética , Gráficos por Computador , Humanos , Alinhamento de Sequência , Análise de Sequência de ProteínaRESUMO
BACKGROUND: Hereditary angioedema (HAE) is a potentially life-threatening group of conditions that is often underdiagnosed or misdiagnosed. As HAE is typically diagnosed by detecting C1 inhibitor deficiency, there is a critical need for methods that can identify affected individuals with normal C1 inhibitor. The recent discovery of associations between PLG K330E and ANGPT1 A119S and HAE of unknown genetic cause (HAE-U), has raised the possibility that genetic evaluation could be used to diagnose HAE-U in patients with unexplained angioedema or non-confirmatory laboratory testing. CASE PRESENTATION: We analyzed genome sequences from a generally healthy population cohort of 2820 adults and identified PLG K330E in one individual. Subsequent review of this participant's medical history revealed symptoms clinically attributed to allergy of unknown etiology but that are consistent with published descriptions of HAE patients carrying the PLG K330E variant. The participant, a 31 year old female, reported lip and tongue angioedema, without wheals, which did not respond to treatment with steroids or antihistamines. CONCLUSIONS: The genotype-first approach demonstrated that detection of PLG K330E in undiagnosed or misdiagnosed individuals can identify patients actually affected with HAE-U. The genetic diagnosis will facilitate selection of appropriate treatment, discontinuation of therapies ineffective for this condition, and timely diagnosis of affected family members. The results support a role of PLG K330E in the pathogenesis of HAE and suggest that genetic testing be considered as an approach to diagnose patients with unexplained angioedema.
RESUMO
Next-generation sequencing enables advances in the clinical application of genomics by providing high-throughput detection of genomic variation. However, next-generation sequencing technologies, especially whole-genome sequencing (WGS), are often associated with a high false-positive rate. Trio-based WGS can contribute significantly towards improved quality control methods. Mendelian-inconsistent calls (MIC) in parent-child trios are commonly attributed to erroneous sequencing calls, as the true de novo mutation rate is extremely low compared with MIC incidence. Here, we analyzed WGS data from 1314 mother, father, and child trios across ethnically diverse populations with the goal of characterizing MIC. Genotype calls in a trio can be used to assign different signatures to MIC. MIC occur more frequently within repeats but show varying distribution and error mechanisms across repeat types. MIC are enriched within poly-A/T runs in short interspersed nuclear elements. Alignability scores, allele balance, and relative parental read depth vary among MIC signatures and these differences should be considered when designing filters for MIC reduction. MIC cluster in germline deletions and these MIC also segregate with population. Our results provide a basis for making decisions on how each MIC type should be evaluated before discarding them as errors or including them in alternative applications. With the reduction of sequencing cost, family trio whole genome and exome analysis are being performed more routinely in clinical practice. We provide a reference that can be used for annotating MIC with their frequencies in a larger population to aid in the filtering of candidate de novo mutations.
Assuntos
Mutação/genética , Alelos , Exoma/genética , Feminino , Genoma Humano/genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Sequenciamento Completo do Genoma/métodosRESUMO
Osteogenesis imperfecta (OI), or brittle bone disease, often results from missense mutation of one of the conserved glycine residues present in the repeating Gly-X-Y sequence characterizing the triple-helical region of type I collagen. A composite model was developed for predicting the clinical lethality resulting from glycine mutations in the alpha1 chain of type I collagen. The lethality of mutations in which bulky amino acids are substituted for glycine is predicted by their position relative to the N-terminal end of the triple helix. The effect of a Gly --> Ser mutation is modeled by the relative thermostability of the Gly-X-Y triplet on the carboxy side of the triplet containing the substitution. This model also predicts the lethality of Gly --> Ser and Gly --> Cys mutations in the alpha2 chain of type I collagen. The model was validated with an independent test set of six novel Gly --> Ser mutations. The hypothesis derived from the model of an asymmetric interaction between a Gly --> Ser mutation and its neighboring residues was tested experimentally using collagen-like peptides. Consistent with the prediction, a significant decrease in stability, calorimetric enthalpy, and folding time was observed for a peptide with a low-stability triplet C-terminal to the mutation compared to a similar peptide with the low-stability triplet on the N-terminal side. The computational and experimental results together relate the position-specific effects of Gly --> Ser mutations to the local structural stability of collagen and lend insight into the etiology of OI.
Assuntos
Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Glicina/genética , Mutação/genética , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/fisiopatologia , Substituição de Aminoácidos , Dicroísmo Circular , Colágeno Tipo I/química , Cadeia alfa 1 do Colágeno Tipo I , Glicina/metabolismo , Humanos , Modelos Biológicos , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/metabolismoRESUMO
Infantile-onset epilepsies are a set of severe, heterogeneous disorders for which clinical genetic testing yields causative mutations in â¼20%-50% of affected individuals. We report the case of a boy presenting with intractable seizures at 2 wk of age, for whom gene panel testing was unrevealing. Research-based whole-genome sequencing of the proband and four unaffected family members identified a de novo mutation, NM_001323289.1:c.2828_2829delGA in CDKL5, a gene associated with X-linked early infantile epileptic encephalopathy 2. CDKL5 has multiple alternative transcripts, and the mutation lies in an exon in the brain-expressed forms. The mutation was undetected by gene panel sequencing because of its intronic location in the CDKL5 transcript typically used to define the exons of this gene for clinical exon-based tests (NM_003159). This is the first report of a patient with a mutation in an alternative transcript of CDKL5 This finding suggests that incorporating alternative transcripts into the design and variant interpretation of exon-based tests, including gene panel and exome sequencing, could improve the diagnostic yield.
Assuntos
Processamento Alternativo , Síndromes Epilépticas/diagnóstico , Síndromes Epilépticas/genética , Proteínas Serina-Treonina Quinases/genética , Convulsões/diagnóstico , Convulsões/genética , Deleção de Sequência , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Idade de Início , Alelos , Biomarcadores , Mapeamento Cromossômico , Análise Mutacional de DNA , Eletroencefalografia , Frequência do Gene , Humanos , Recém-Nascido , Masculino , Linhagem , Fenótipo , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Congenital cardiac defects, whether isolated or as part of a larger syndrome, are the most common type of human birth defect occurring on average in about 1% of live births depending on the malformation. As there is an expanding understanding of the underlying molecular mechanisms by which a cardiac defect may occur, there is a need to assess the current rates of diagnosis of cardiac defects by molecular sequencing in a clinical setting. METHODS AND RESULTS: In this report, we evaluated 34 neonatal and pediatric patients born with a cardiac defect and their parents using exomized preexisting whole genome sequencing (WGS) data to model clinically available exon-based tests. Overall, we identified candidate variants in previously reported cardiac-related genes in 35% (12/34) of the probands. These include clearly pathogenic variants in two of 34 patients (6%) and variants of uncertain significance in relevant genes in 10 patients (26%), of these latter 10, 2 segregated with clinically apparent findings in the family trios. CONCLUSIONS: These findings suggest that with current knowledge of the proteins underlying CHD, genomic sequencing can identify the underlying genetic etiology in certain patients; however, this technology currently does not have a high enough yield to be of routine clinical use in the screening of pediatric congenital cardiac defects.
Assuntos
Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Adulto , Sequência de Bases , Criança , Pré-Escolar , Feminino , Genômica/métodos , Hospitais Comunitários , Humanos , Lactente , Recém-Nascido , Masculino , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodosRESUMO
Clustering of mutations has been observed in cancer genomes as well as for germline de novo mutations (DNMs). We identified 1,796 clustered DNMs (cDNMs) within whole-genome-sequencing data from 1,291 parent-offspring trios to investigate their patterns and infer a mutational mechanism. We found that the number of clusters on the maternal allele was positively correlated with maternal age and that these clusters consisted of more individual mutations with larger intermutational distances than those of paternal clusters. More than 50% of maternal clusters were located on chromosomes 8, 9 and 16, in previously identified regions with accelerated maternal mutation rates. Maternal clusters in these regions showed a distinct mutation signature characterized by C>G transversions. Finally, we found that maternal clusters were associated with processes involving double-strand-breaks (DSBs), such as meiotic gene conversions and de novo deletion events. This result suggested accumulation of DSB-induced mutations throughout oocyte aging as the mechanism underlying the formation of maternal mutation clusters.
Assuntos
Senescência Celular/genética , Quebras de DNA de Cadeia Dupla , Mutação em Linhagem Germinativa , Oócitos/citologia , Oócitos/metabolismo , Adulto , Estudos de Coortes , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Feminino , Humanos , Recém-Nascido , Masculino , Idade Materna , Pessoa de Meia-Idade , Família Multigênica , Idade Paterna , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
The genetic susceptibility to preeclampsia, a pregnancy-specific complication with significant maternal and fetal morbidity, has been poorly characterized. To identify maternal genes associated with preeclampsia risk, we assembled 498 cases and 1864 controls of European ancestry from preeclampsia case-control collections in 5 different US sites (with additional matched population controls), genotyped samples on a cardiovascular gene-centric array composed of variants from ≈2000 genes selected based on prior genetic studies of cardiovascular and metabolic diseases and performed case-control genetic association analysis on 27 429 variants passing quality control. In silico replication testing of 9 lead signals with P<10-4 was performed in independent European samples from the SOPHIA (Study of Pregnancy Hypertension in Iowa) and Inova cohorts (212 cases, 456 controls). Multiethnic assessment of lead signals was then performed in samples of black (26 cases, 136 controls), Hispanic (132 cases, 468 controls), and East Asian (9 cases, 80 controls) ancestry. Multiethnic meta-analysis (877 cases, 3004 controls) revealed a study-wide statistically significant association of the rs9478812 variant in the pleiotropic PLEKHG1 gene (odds ratio, 1.40 [1.23-1.60]; Pmeta=5.90×10-7). The rs9478812 effect was even stronger in the subset of European cases with known early-onset preeclampsia (236 cases diagnosed <37 weeks, 1864 controls; odds ratio, 1.59 [1.27-1.98]; P=4.01×10-5). PLEKHG1 variants have previously been implicated in genome-wide association studies of blood pressure, body weight, and neurological disorders. Although larger studies are required to further define maternal preeclampsia heritability, this study identifies a novel maternal risk locus for further investigation.