Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Circulation ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005211

RESUMO

BACKGROUND: Activation of the immune system contributes to cardiovascular diseases. The role of human-specific long noncoding RNAs in cardioimmunology is poorly understood. METHODS: Single-cell sequencing in peripheral blood mononuclear cells revealed a novel human-specific long noncoding RNA called HEAT4 (heart failure-associated transcript 4). HEAT4 expression was assessed in several in vitro and ex vivo models of immune cell activation, as well as in the blood of patients with heart failure (HF), acute myocardial infarction, or cardiogenic shock. The transcriptional regulation of HEAT4 was verified through cytokine treatment and single-cell sequencing. Loss-of-function and gain-of-function studies and multiple RNA-protein interaction assays uncovered a mechanistic role of HEAT4 in the monocyte anti-inflammatory gene program. HEAT4 expression and function was characterized in a vascular injury model in NOD.CB17-Prkdc scid/Rj mice. RESULTS: HEAT4 expression was increased in the blood of patients with HF, acute myocardial infarction, or cardiogenic shock. HEAT4 levels distinguished patients with HF from people without HF and predicted all-cause mortality in a cohort of patients with HF over 7 years of follow-up. Monocytes, particularly anti-inflammatory CD16+ monocytes, which are increased in patients with HF, are the primary source of HEAT4 expression in the blood. HEAT4 is transcriptionally activated by treatment with anti-inflammatory interleukin-10. HEAT4 activates anti-inflammatory and inhibits proinflammatory gene expression. Increased HEAT4 levels result in a shift toward more CD16+ monocytes. HEAT4 binds to S100A9, causing a monocyte subtype switch, thereby reducing inflammation. As a result, HEAT4 improves endothelial barrier integrity during inflammation and promotes vascular healing after injury in mice. CONCLUSIONS: These results characterize a novel endogenous anti-inflammatory pathway that involves the conversion of monocyte subtypes into anti-inflammatory CD16+ monocytes. The data identify a novel function for the class of long noncoding RNAs by preventing protein secretion and suggest long noncoding RNAs as potential targets for interventions in the field of cardioimmunology.

2.
Proc Natl Acad Sci U S A ; 119(40): e2110374119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161905

RESUMO

Lipodystrophy syndromes (LDs) are characterized by loss of adipose tissue, metabolic complications such as dyslipidemia, insulin resistance, and fatty liver disease, as well as accelerated atherosclerosis. As a result of adipose tissue deficiency, the systemic concentration of the adipokine leptin is reduced. A current promising therapeutic option for patients with LD is treatment with recombinant leptin (metreleptin), resulting in reduced risk of mortality. Here, we investigate the effects of leptin on endothelial to mesenchymal transition (EndMT), which impair the functional properties of endothelial cells and promotes atherogenesis in LD. Leptin treatment reduced inflammation and TGF-ß2-induced expression of mesenchymal genes and prevented impairment of endothelial barrier function. Treatment of lipodystrophic- and atherosclerosis-prone animals (Ldlr-/-; aP2-nSrebp1c-Tg) with leptin reduced macrophage accumulation in atherosclerotic lesions, vascular plaque protrusion, and the number of endothelial cells with mesenchymal gene expression, confirming a reduction in EndMT in LD after leptin treatment. Treatment with leptin inhibited LD-mediated induction of the proatherosclerotic cytokine growth/differentiation factor 15 (GDF15). Inhibition of GDF15 reduced EndMT induction triggered by plasma from patients with LD. Our study reveals that in addition to the effects on adipose tissue function, leptin treatment exerts beneficial effects protecting endothelial function and identity in LD by reducing GDF15.


Assuntos
Células Endoteliais , Transição Epitelial-Mesenquimal , Fator 15 de Diferenciação de Crescimento , Leptina , Lipodistrofia , Animais , Aterosclerose/genética , Células Endoteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Leptina/farmacologia , Leptina/uso terapêutico , Lipodistrofia/tratamento farmacológico , Lipodistrofia/genética , Camundongos , Fator de Crescimento Transformador beta2/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(8): 4180-4187, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32034099

RESUMO

Endothelial cells play an important role in maintenance of the vascular system and the repair after injury. Under proinflammatory conditions, endothelial cells can acquire a mesenchymal phenotype by a process named endothelial-to-mesenchymal transition (EndMT), which affects the functional properties of endothelial cells. Here, we investigated the epigenetic control of EndMT. We show that the histone demethylase JMJD2B is induced by EndMT-promoting, proinflammatory, and hypoxic conditions. Silencing of JMJD2B reduced TGF-ß2-induced expression of mesenchymal genes, prevented the alterations in endothelial morphology and impaired endothelial barrier function. Endothelial-specific deletion of JMJD2B in vivo confirmed a reduction of EndMT after myocardial infarction. EndMT did not affect global H3K9me3 levels but induced a site-specific reduction of repressive H3K9me3 marks at promoters of mesenchymal genes, such as Calponin (CNN1), and genes involved in TGF-ß signaling, such as AKT Serine/Threonine Kinase 3 (AKT3) and Sulfatase 1 (SULF1). Silencing of JMJD2B prevented the EndMT-induced reduction of H3K9me3 marks at these promotors and further repressed these EndMT-related genes. Our study reveals that endothelial identity and function is critically controlled by the histone demethylase JMJD2B, which is induced by EndMT-promoting, proinflammatory, and hypoxic conditions, and supports the acquirement of a mesenchymal phenotype.


Assuntos
Células Endoteliais/enzimologia , Transição Epitelial-Mesenquimal , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Mesenquimais/citologia , Células Endoteliais/citologia , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Células-Tronco Mesenquimais/enzimologia , Fator de Crescimento Transformador beta2/metabolismo
4.
Basic Res Cardiol ; 117(1): 32, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35737129

RESUMO

Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Edição de RNA , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA/química , RNA/genética , RNA/metabolismo , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806332

RESUMO

Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III2, III2 + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.


Assuntos
Valina-tRNA Ligase , Peixe-Zebra , Animais , Ácidos Graxos , Antígenos HLA/genética , Mitocôndrias/genética , Valina-tRNA Ligase/genética , Peixe-Zebra/genética
6.
Am J Respir Crit Care Med ; 202(10): 1445-1457, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634060

RESUMO

Rationale: Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological functions. Their role in pulmonary arterial hypertension (PAH) remains to be explored.Objectives: To elucidate the role of TYKRIL (tyrosine kinase receptor-inducing lncRNA) as a regulator of p53/ PDGFRß (platelet-derived growth factor receptor ß) signaling pathway and to investigate its role in PAH.Methods: Pericytes and pulmonary arterial smooth muscle cells exposed to hypoxia and derived from patients with idiopathic PAH were analyzed with RNA sequencing. TYKRIL knockdown was performed in above-mentioned human primary cells and in precision-cut lung slices derived from patients with PAH.Measurements and Main Results: Using RNA sequencing data, TYKRIL was identified to be consistently upregulated in pericytes and pulmonary arterial smooth muscles cells exposed to hypoxia and derived from patients with idiopathic PAH. TYKRIL knockdown reversed the proproliferative (n = 3) and antiapoptotic (n = 3) phenotype induced under hypoxic and idiopathic PAH conditions. Owing to the poor species conservation of TYKRIL, ex vivo studies were performed in precision-cut lung slices from patients with PAH. Knockdown of TYKRIL in precision-cut lung slices decreased the vascular remodeling (n = 5). The number of proliferating cell nuclear antigen-positive cells in the vessels was decreased and the number of terminal deoxynucleotide transferase-mediated dUTP nick end label-positive cells in the vessels was increased in the LNA (locked nucleic acid)-treated group compared with control. Expression of PDGFRß, a key player in PAH, was found to strongly correlate with TYKRIL expression in the patient samples (n = 12), and TYKRIL knockdown decreased PDGFRß expression (n = 3). From the transcription factor-screening array, it was observed that TYKRIL knockdown increased the p53 activity, a known repressor of PDGFRß. RNA immunoprecipitation using various p53 mutants demonstrated that TYKRIL binds to the N-terminal of p53 (an important region for p300 interaction with p53). The proximity ligation assay revealed that TYKRIL interferes with the p53-p300 interaction (n = 3) and regulates p53 nuclear translocation.Conclusions: TYKRIL plays an important role in PAH by regulating the p53/PDGFRß axis.


Assuntos
Expressão Gênica , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Proteínas Tirosina Quinases/genética , RNA Longo não Codificante , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
J Mol Cell Cardiol ; 126: 13-22, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445017

RESUMO

AIMS: Circulating immune cells have a significant impact on progression and outcome of heart failure. Long non-coding RNAs (lncRNAs) comprise novel epigenetic regulators which control cardiovascular diseases and inflammatory disorders. We aimed to identify lncRNAs regulated in circulating immune cells of the blood of heart failure patients. METHODS AND RESULTS: Next-generation sequencing revealed 110 potentially non-coding RNA transcripts differentially expressed in peripheral blood mononuclear cells of heart failure patients with reduced ejection fraction. The up-regulated lncRNA Heat2 was further functionally characterized. Heat2 expression was detected in whole blood, PBMNCs, eosinophil and basophil granulocytes. Heat2 regulates cell division, invasion, transmigration and immune cell adhesion on endothelial cells. CONCLUSION: Heat2 is an immune cell enriched lncRNA that is elevated in the blood of heart failure patients and controls cellular functions.


Assuntos
Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Eosinófilos/metabolismo , Feminino , Insuficiência Cardíaca/sangue , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Circ Res ; 121(4): 368-375, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28611075

RESUMO

RATIONALE: Pericytes are essential for vessel maturation and endothelial barrier function. Long noncoding RNAs regulate many cellular functions, but their role in pericyte biology remains unexplored. OBJECTIVE: Here, we investigate the effect of hypoxia-induced endoplasmic reticulum stress regulating long noncoding RNAs (HypERlnc, also known as ENSG00000262454) on pericyte function in vitro and its regulation in human heart failure and idiopathic pulmonary arterial hypertension. METHODS AND RESULTS: RNA sequencing in human primary pericytes identified hypoxia-regulated long noncoding RNAs, including HypERlnc. Silencing of HypERlnc decreased cell viability and proliferation and resulted in pericyte dedifferentiation, which went along with increased endothelial permeability in cocultures consisting of human primary pericyte and human coronary microvascular endothelial cells. Consistently, Cas9-based transcriptional activation of HypERlnc was associated with increased expression of pericyte marker genes. Moreover, HypERlnc knockdown reduced endothelial-pericyte recruitment in Matrigel assays (P<0.05). Mechanistically, transcription factor reporter arrays demonstrated that endoplasmic reticulum stress-related transcription factors were prominently activated by HypERlnc knockdown, which was confirmed via immunoblotting for the endoplasmic reticulum stress markers IRE1α (P<0.001), ATF6 (P<0.01), and soluble BiP (P<0.001). Kyoto encyclopedia of genes and gene ontology pathway analyses of RNA sequencing experiments after HypERlnc knockdown indicate a role in cardiovascular disease states. Indeed, HypERlnc expression was significantly reduced in human cardiac tissue from patients with heart failure (P<0.05; n=19) compared with controls. In addition, HypERlnc expression significantly correlated with pericyte markers in human lungs derived from patients diagnosed with idiopathic pulmonary arterial hypertension and from donor lungs (n=14). CONCLUSIONS: Here, we show that HypERlnc regulates human pericyte function and the endoplasmic reticulum stress response. In addition, RNA sequencing analyses in conjunction with reduced expression of HypERlnc in heart failure and correlation with pericyte markers in idiopathic pulmonary arterial hypertension indicate a role of HypERlnc in human cardiopulmonary disease.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Células Endoteliais/metabolismo , Pericitos/metabolismo , RNA Longo não Codificante/biossíntese , Animais , Sequência de Bases , Hipóxia Celular/fisiologia , Técnicas de Cocultura , Células Endoteliais/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pericitos/patologia , RNA Longo não Codificante/genética , Distribuição Aleatória
9.
Adv Exp Med Biol ; 1087: 41-52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30259356

RESUMO

Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules derived from exons by alternative mRNA splicing. Circularization of single-stranded RNA molecules was already described in 1976 for viroids in plants. Since then several additional types of circular RNAs in many species have been described such as the circular single-stranded RNA genome of the hepatitis delta virus (HDV) or circular RNAs as products or intermediates of tRNA and rRNA maturation in archaea. CircRNAs are generally formed by covalent binding of the 5' site of an upstream exon with the 3' of the same or a downstream exon. Meanwhile, two different models of circRNA biogenesis have been described, the lariat or exon skipping model and the direct backsplicing model. In the lariat model, canonical splicing occurs before backsplicing, whereas in the direct backsplicing model, the circRNA is generated first. In this chapter, we will review the formation of circular RNAs and highlight the derivation of different types of circular RNAs.


Assuntos
Processamento Alternativo , RNA/genética , Éxons/genética , Regulação da Expressão Gênica , Humanos , Íntrons/genética , Modelos Genéticos , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Circular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Spliceossomos/metabolismo , Viroides/genética
10.
Circ Res ; 117(10): 884-90, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26377962

RESUMO

RATIONALE: Circular RNAs (circRNAs) are noncoding RNAs generated by back splicing. Back splicing has been considered a rare event, but recent studies suggest that circRNAs are widely expressed. However, the expression, regulation, and function of circRNAs in vascular cells is still unknown. OBJECTIVE: Here, we characterize the expression, regulation, and function of circRNAs in endothelial cells. METHODS AND RESULTS: Endothelial circRNAs were identified by computational analysis of ribo-minus RNA generated from human umbilical venous endothelial cells cultured under normoxic or hypoxic conditions. Selected circRNAs were biochemically characterized, and we found that the majority of them lacks polyadenylation, is resistant to RNase R digestion and localized to the cytoplasm. We further validated the hypoxia-induced circRNAs cZNF292, cAFF1, and cDENND4C, as well as the downregulated cTHSD1 by reverse transcription polymerase chain reaction in cultured endothelial cells. Cloning of cZNF292 validated the predicted back splicing of exon 4 to a new alternative exon 1A. Silencing of cZNF292 inhibited cZNF292 expression and reduced tube formation and spheroid sprouting of endothelial cells in vitro. The expression of pre-mRNA or mRNA of the host gene was not affected by silencing of cZNF292. No validated microRNA-binding sites for cZNF292 were detected in Argonaute high-throughput sequencing of RNA isolated by cross-linking and immunoprecipitation data sets, suggesting that cZNF292 does not act as a microRNA sponge. CONCLUSIONS: We show that the majority of the selected endothelial circRNAs fulfill all criteria of bona fide circRNAs. The circRNA cZNF292 exhibits proangiogenic activities in vitro. These data suggest that endothelial circRNAs are regulated by hypoxia and have biological functions.


Assuntos
Proteínas de Transporte/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas do Tecido Nervoso/genética , RNA/genética , Proteínas de Transporte/metabolismo , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Análise por Conglomerados , Simulação por Computador , Éxons , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , RNA/metabolismo , Interferência de RNA , Splicing de RNA , RNA Circular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
11.
Arterioscler Thromb Vasc Biol ; 36(7): 1425-33, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27199445

RESUMO

OBJECTIVE: Jumonji C (JmjC) domain-containing proteins modify histone and nonhistone proteins thereby controlling cellular functions. However, the role of JmjC proteins in angiogenesis is largely unknown. Here, we characterize the expression of JmjC domain-containing proteins after inducing endothelial differentiation of murine embryonic stem cells and study the function of JmjC domain-only proteins in endothelial cell (EC) functions. APPROACH AND RESULTS: We identified a large number of JmjC domain-containing proteins regulated by endothelial differentiation of murine embryonic stem cells. Among the family of JmjC domain-only proteins, Jmjd8 was significantly upregulated on endothelial differentiation. Knockdown of Jmjd8 in ECs significantly decreased in vitro network formation and sprouting in the spheroid assay. JMJD8 is exclusively detectable in the cytoplasm, excluding a function as a histone-modifying enzyme. Mass spectrometry analysis revealed JMJD8-interacting proteins with known functions in cellular metabolism like pyruvate kinase M2. Accordingly, knockdown of pyruvate kinase M2 in human umbilical vein ECs decreased endothelial sprouting in the spheroid assay. Knockdown of JMJD8 caused a reduction of EC metabolism as measured by Seahorse Bioscience extracellular flux analysis. Conversely, overexpression of JMJD8 enhanced cellular oxygen consumption rate of ECs, reflecting an increased mitochondrial respiration. CONCLUSIONS: Jmjd8 is upregulated during endothelial differentiation and regulates endothelial sprouting and metabolism by interacting with pyruvate kinase M2.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/enzimologia , Células Progenitoras Endoteliais/enzimologia , Metabolismo Energético , Células Endoteliais da Veia Umbilical Humana/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Piruvato Quinase/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Proteínas de Transporte/genética , Respiração Celular , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/enzimologia , Consumo de Oxigênio , Ligação Proteica , Piruvato Quinase/genética , Interferência de RNA , Transdução de Sinais , Hormônios Tireóideos/genética , Fatores de Tempo , Transfecção , Regulação para Cima , Proteínas de Ligação a Hormônio da Tireoide
12.
Circ J ; 81(8): 1165-1173, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28420816

RESUMO

BACKGROUND: The association between cardiovascular risk factors (CVRF) and the risk of coronary events is widely acknowledged. Whether individual risk factors may be associated with distinct plaque characteristics is currently unclear. We investigated the relationship between CVRF and coronary plaque burden and phenotype.Methods and Results:We assessed coronary atherosclerotic plaque characteristics by optical coherence tomography in 67 patients with stable coronary artery disease undergoing coronary angiography. The plaque burden and the distinct plaque phenotypes were compared with regard to different CVRF. Overall plaque burden was significantly greater in patients with diabetes mellitus (P=0.010), prediabetes (P=0.035) and obesity (P=0.024), and correlated with the number of CVRF (R=0.358, P=0.003). Patients with diabetes had a greater extent of fibroatheroma (P=0.015), calcific fibroatheroma (P=0.031), thin-cap fibroatheroma (TCFA-P=0.011) and plaque erosion (P=0.002). Obese patients showed a greater extent of fibroatheroma (P=0.007), TCFA (P=0.015) and macrophage load (P=0.043). The number of CVRF correlated with fibroatheroma (R=0.425, P<0.001), calcific fibroatheroma (R=0.321, P=0.008), TCFA (R=0.347, P=0.004), macrophage load (R=0.314, P=0.010) and erosion (R=0.271, P=0.029). In the multivariate analysis, altered glycemic status and obesity were the only independent predictors of TCFA (P=0.026 and P=0.046, respectively), whereas altered glycemic status was the only independent predictor of plaque erosion (P=0.001). CONCLUSIONS: Patients with diabetes, prediabetes and obesity show more extensive coronary atherosclerosis and more vulnerable plaque phenotypes.


Assuntos
Doença da Artéria Coronariana , Complicações do Diabetes/diagnóstico por imagem , Obesidade , Placa Aterosclerótica , Estado Pré-Diabético , Tomografia de Coerência Óptica , Idoso , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/etiologia , Estado Pré-Diabético/complicações , Estado Pré-Diabético/diagnóstico por imagem , Sistema de Registros
13.
Eur Heart J ; 37(22): 1738-49, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26916800

RESUMO

AIMS: Circulating microRNAs (miRs) may reflect pathophysiologically relevant processes in the atherosclerotically diseased coronary arterial wall. Given the unmet medical need to identify patients with an unstable plaque phenotype, we determined the relation of circulating atherosclerosis-regulatory miRs with plaque phenotypes. METHODS AND RESULTS: We assessed coronary atherosclerotic plaque burden and phenotype by optical coherence tomography in 52 patients and measured the levels of circulating miRs across the transcoronary gradient. The overall plaque load was significantly correlated with transcoronary concentration gradients of miR-126-3p (P = 0.04), miR-145-5p (P = 0.01), miR-155-5p (P < 0.01), and miR-29b-3p (P = 0.02), but not with other miRs such as miR-92a-3p. In patients with a high extent of vulnerable plaques as assessed by the presence of thin-cap fibroatheromas (TCFAs), significantly higher transcoronary gradients were observed, particularly for miR-126-3p, miR-126-5p, and miR-145-5p (all P < 0.02). Transcoronary gradients of miR-126-3p (P < 0.01), miR-126-5p (P < 0.01), miR-145-5p (P = 0.01), miR-29b-3p (P = 0.03), and miR-155-5p (P = 0.02) demonstrated a significant discriminatory power to predict the presence of TCFAs (AUC > 0.7 for all). Moreover, aortic and venous coronary sinus levels of miR-29b-3p were inversely correlated with plaque fibrosis, a finding that is consistent with the anti-fibrotic activity of miR-29b-3p. CONCLUSION: The overall plaque burden and plaque phenotypes are associated with changes in the kinetics of miR-concentrations across the transcoronary passage. Transcoronary gradients of the anti-atherosclerotic miR-126-3p and miR-145-5p correlated with the extent of TCFAs, suggesting that instable plaques may affect the local uptake or degradation of these miRs.


Assuntos
Placa Aterosclerótica , Aterosclerose , Vasos Coronários , Coração , Humanos , MicroRNAs
14.
Clin Chem ; 61(9): 1197-206, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220065

RESUMO

BACKGROUND: The limit of detection (LoD) is the minimal amount of a substance that can be consistently detected. In the diagnosis of acute myocardial infarction (AMI) many patients present with troponin concentrations below the LoD of contemporary sensitive cardiac troponin I (cs-cTnI) assays. These censored values below the LoD influence the diagnostic performance of these assays compared to highly sensitive cTnI (hs-cTnI) assays. Therefore we assessed the impact of a new approach for interpolation of the left-censored data of a cs-cTnI assay in the evaluation of patients with suspected AMI. METHODS: Our posthoc analysis used a real world cohort of 1818 patients with suspected MI. Data on cs-cTnI was available in 1786 patients. As a comparator the hs-cTnI version of the assay was used. To reconstruct quantities below the LoD of the cs-cTnI assay, a gamma regression approach incorporating the GRACE (Global Registry of Acute Coronary Events) score variables was used. RESULTS: Censoring of cs-cTnI data below the LoD yielded weaker diagnostic information [area under the curve (AUC), 0.781; 95% CI, 0.731-0.831] regarding AMI compared to the hs-cTnI assay (AUC, 0.949; CI, 0.936-0.961). Use of our model to estimate cs-cTnI values below the LoD showed an AUC improvement to 0.921 (CI, 0.902-0.940). The cs-cTnI LoD concentration had a negative predictive value (NPV) of 0.950. An estimated concentration that was to be undercut by 25% of patients presenting with suspected AMI was associated with an improvement of the NPV to 0.979. CONCLUSIONS: Estimation of values below the LoD of a cs-cTnI assay with this new approach improves the diagnostic performance in evaluation of patients with suspected AMI.


Assuntos
Infarto do Miocárdio/diagnóstico , Troponina I/sangue , Doença Aguda , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Estudos de Coortes , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Prognóstico , Curva ROC , Análise de Regressão
15.
Blood ; 119(6): 1607-16, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22184411

RESUMO

MicroRNAs (miRs) are small RNAs that regulate gene expression at the posttranscriptional level. miR-27 is expressed in endothelial cells, but the specific functions of miR-27b and its family member miR-27a are largely unknown. Here we demonstrate that overexpression of miR-27a and miR-27b significantly increased endothelial cell sprouting. Inhibition of both miR-27a and miR-27b impaired endothelial cell sprout formation and induced endothelial cell repulsion in vitro. In vivo, inhibition of miR-27a/b decreased the number of perfused vessels in Matrigel plugs and impaired embryonic vessel formation in zebrafish. Mechanistically, miR-27 regulated the expression of the angiogenesis inhibitor semaphorin 6A (SEMA6A) in vitro and in vivo and targeted the 3'-untranslated region of SEMA6A. Silencing of SEMA6A partially reversed the inhibition of endothelial cell sprouting and abrogated the repulsion of endothelial cells mediated by miR-27a/b inhibition, indicating that SEMA6A is a functionally relevant miR-27 downstream target regulating endothelial cell repulsion. In summary, we show that miR-27a/b promotes angiogenesis by targeting the angiogenesis inhibitor SEMA6A, which controls repulsion of neighboring endothelial cells.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica/genética , Semaforinas/genética , Regiões 3' não Traduzidas/genética , Animais , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Western Blotting , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Células Endoteliais/fisiologia , Expressão Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neovascularização Fisiológica/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Semaforinas/metabolismo , Transfecção , Peixe-Zebra/embriologia , Peixe-Zebra/genética
16.
Arterioscler Thromb Vasc Biol ; 33(3): 533-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23288173

RESUMO

OBJECTIVE: Histone deacetylases (HDACs) modulate gene expression by deacetylation of histone and nonhistone proteins. Several HDACs control angiogenesis, but the role of HDAC9 is unclear. METHODS AND RESULTS: Here, we analyzed the function of HDAC9 in angiogenesis and its involvement in regulating microRNAs. In vitro, silencing of HDAC9 reduces endothelial cell tube formation and sprouting. Furthermore, HDAC9 silencing decreases vessel formation in a spheroid-based Matrigel plug assay in mice and disturbs vascular patterning in zebrafish embryos. Genetic deletion of HDAC9 reduces retinal vessel outgrowth and impairs blood flow recovery after hindlimb ischemia. Consistently, overexpression of HDAC9 increases endothelial cell sprouting, whereas mutant constructs lacking the catalytic domain, the nuclear localization sequence, or sumoylation site show no effect. To determine the mechanism underlying the proangiogenic effect of HDAC9, we measured the expression of the microRNA (miR)-17-92 cluster, which is known for its antiangiogenic activity. We demonstrate that silencing of HDAC9 in endothelial cells increases the expression of miR-17-92. Inhibition of miR-17-20a rescues the sprouting defects induced by HDAC9 silencing in vitro and blocking miR-17 expression partially reverses the disturbed vascular patterning of HDAC9 knockdown in zebrafish embryos. CONCLUSIONS: We found that HDAC9 promotes angiogenesis and transcriptionally represses the miR-17-92 cluster.


Assuntos
Histona Desacetilases/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Isquemia/enzimologia , MicroRNAs/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Proteínas Repressoras/metabolismo , Neovascularização Retiniana/enzimologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Células HEK293 , Membro Posterior , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Mutação , Neovascularização Fisiológica/genética , Interferência de RNA , RNA Longo não Codificante , Fluxo Sanguíneo Regional , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/fisiopatologia , Transfecção , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Proc Natl Acad Sci U S A ; 108(8): 3276-81, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300889

RESUMO

JmjC domain-containing proteins play a crucial role in the control of gene expression by acting as protein hydroxylases or demethylases, thereby controlling histone methylation or splicing. Here, we demonstrate that silencing of Jumonji domain-containing protein 6 (Jmjd6) impairs angiogenic functions of endothelial cells by changing the gene expression and modulating the splicing of the VEGF-receptor 1 (Flt1). Reduction of Jmjd6 expression altered splicing of Flt1 and increased the levels of the soluble form of Flt1, which binds to VEGF and placental growth factor (PlGF) and thereby inhibits angiogenesis. Saturating VEGF or PlGF or neutralizing antibodies directed against soluble Flt1 rescued the angiogenic defects induced by Jmjd6 silencing. Jmjd6 interacts with the splicing factors U2AF65 that binds to Flt1 mRNA. In conclusion, Jmjd6 regulates the splicing of Flt1, thereby controlling angiogenic sprouting.


Assuntos
Endotélio Vascular/citologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Neovascularização Fisiológica/fisiologia , Splicing de RNA , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Células Cultivadas , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Neovascularização Fisiológica/genética , Fator de Crescimento Placentário , Proteínas da Gravidez , Processamento de Proteína Pós-Traducional , Fator A de Crescimento do Endotélio Vascular
18.
Circ Res ; 109(11): 1219-29, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21980126

RESUMO

RATIONALE: Proangiogenic hematopoietic and endothelial progenitor cells (EPCs) contribute to postnatal neovascularization, but the mechanisms regulating differentiation to the endothelial lineage are unclear. OBJECTIVE: To elucidate the epigenetic control of endothelial gene expression in proangiogenic cells and EPCs. METHODS AND RESULTS: Here we demonstrate that the endothelial nitric oxide synthase (eNOS) promoter is epigenetically silenced in proangiogenic cells (early EPCs), CD34(+) cells, and mesoangioblasts by DNA methylation and prominent repressive histone H3K27me3 marks. In order to reverse epigenetic silencing to facilitate endothelial commitment, we used 3-deazaneplanocin A, which inhibits the histone methyltransferase enhancer of zest homolog 2 and, thereby, reduces H3K27me3. 3-Deazaneplanocin A was not sufficient to increase eNOS expression, but the combination of 3-deazaneplanocin A and the histone deacetylase inhibitor Trichostatin A augmented eNOS expression, indicating that the concomitant inhibition of silencing histone modification and enhancement of activating histone modification facilitates eNOS expression. In ischemic tissue, hypoxia plays a role in recruiting progenitor cells. Therefore, we examined the effect of hypoxia on epigenetic modifications. Hypoxia modulated the balance of repressive to active histone marks and increased eNOS mRNA expression. The reduction of repressive H3K27me3 was associated with an increase of the histone demethylase Jmjd3. Silencing of Jmjd3 induced apoptosis and senescence in proangiogenic cells and inhibited hypoxia-mediated up-regulation of eNOS expression in mesoangioblasts. CONCLUSIONS: These findings provide evidence that histone modifications epigenetically control the eNOS promoter in proangiogenic cells.


Assuntos
Metilação de DNA/fisiologia , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/fisiologia , Neovascularização Fisiológica/genética , Óxido Nítrico Sintase Tipo III/genética , Acetilação/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem da Célula , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Senescência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Óxido Nítrico Sintase Tipo III/biossíntese , Regiões Promotoras Genéticas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
19.
iScience ; 26(4): 106352, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37009214

RESUMO

Rubella virus (RuV) infection during pregnancy can lead to abortion, stillbirth, and embryonic defects, resulting in congenital rubella syndrome (CRS). It is estimated that there are still 100,000 cases of CRS per year in developing regions with a mortality rate of over 30%. The molecular pathomechanisms remain largely unexplored. Placental endothelial cells (EC) are frequently infected with RuV. RuV reduced the angiogenic and migratory capacity of primary human EC, as confirmed by treatment of EC with serum from RuV IgM-positive patients. Next generation sequencing analysis revealed the induction of antiviral interferon (IFN) type I and III and CXCL10. The RuV-induced transcriptional profile resembled the effects of IFN-ß treatment. The RuV-mediated inhibition of angiogenesis was reversed by treatment with blocking and neutralizing antibodies targeting CXCL10 and the IFN-ß receptor. The data identify an important role for antiviral IFN-mediated induction of CXCL10 in the control of EC function during RuV infection.

20.
Front Immunol ; 14: 1252384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701434

RESUMO

Introduction: The interleukin-1 (IL-1) family and the NLR family pyrin domain-containing 3 (NLRP3) inflammasome contribute to atherogenesis but the underlying mechanisms are incompletely understood. Unlike IL-1ß, IL-1α is not dependent on the NLRP3 inflammasome to exert its pro-inflammatory effects. Here, a non-genetic model was applied to characterize the role of IL-1α, IL-1ß, and NLRP3 for the pathogenesis of atherosclerosis. Methods: Atherogenesis was induced by gain-of-function PCSK9-AAV8 mutant viruses and feeding of a high-fat western diet (WTD) for 12 weeks in C57Bl6/J wildtype mice (WT) and in Il1a-/-, Nlrp3-/-, and Il1b-/- mice. Results: PCSK9-Il1a-/- mice showed reduced atherosclerotic plaque area in the aortic root with lower lipid accumulation, while no difference was observed between PCSK9-WT, PCSK9-Nlrp3-/- and PCSK9-Il1b-/- mice. Serum proteomic analysis showed a reduction of pro-inflammatory cytokines (e.g., IL-1ß, IL-6) in PCSK9-Il1a-/- as well as in PCSK9-Nlrp3-/- and PCSK9-Il1b-/- mice. Bone marrow dendritic cells (BMDC) of PCSK9-WT, PCSK9-Nlrp3-/-, and PCSK9-Il1b-/- mice and primary human monocytes showed translocation of IL-1α to the plasma membrane (csIL-1α) upon stimulation with LPS. The translocation of IL-1α to the cell surface was regulated by myristoylation and increased in mice with hypercholesterolemia. CsIL-1α and IL1R1 protein-protein interaction on endothelial cells induced VCAM1 expression and monocyte adhesion, which was abrogated by the administration of neutralizing antibodies against IL-1α and IL1R1. Conclusion: The results highlight the importance of IL-1α on the cell surface of circulating leucocytes for the development of atherosclerosis. PCSK9-Il1a-/- mice, but not PCSK9-Nlrp3-/- or PCSK9-Il1b-/- mice, are protected from atherosclerosis after induction of hypercholesterolemia independent of circulating cytokines. Myristoylation and translocation of IL-1α to the cell surface in myeloid cells facilitates leukocyte adhesion and contributes to the development of atherosclerosis.


Assuntos
Aterosclerose , Hipercolesterolemia , Animais , Humanos , Camundongos , Aterosclerose/genética , Células Endoteliais , Inflamassomos , Interleucina-1alfa , Leucócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA