RESUMO
Bedaquiline is used to treat multi-resistant tuberculosis in adults. The fumarate salt is commercially available and used in the product Sirturo. To provide open access to bedaquiline molecule once the patent on the chemical substance expires, new salts were screened. This work offers additional information on the bedaquiline system, as new salts may present better pharmacokinetic properties. The current studies focus on the attempted isolation of the acetate, benzoate, benzenesulfonate, hydrobromide, succinate, hydrochloride, tartrate, lactate, maleate, malate, and mesylate salts of bedaquiline. Potential salts were screened using a unique combination of conventional screening, and small-scale experiments supplemented by crystallographic analysis and infrared microspectroscopy. Salts were prepared on a larger scale by dissolving 1:1 ratios of the individual salt formers and bedaquiline base (30 mg, 0.055 mmol) in different solvents and allowing the solutions to evaporate or crystallize. X-ray diffraction (XRD) techniques and spectroscopic and thermal analyses were employed to characterize the salts. The benzoate and maleate salts were selected as lead candidates after reviewing preliminary characterization data. To determine the most stable forms for the leads, a polymorph screen was conducted using solvents of various polarities. These salt screens successfully generated five new salts of bedaquiline, namely, benzoate, maleate, hydrochloride, besylate, and mesylate. The existence of these salts was confirmed by powder XRD, proton NMR, and IR spectroscopies. TGA and DSC thermal analysis along with hot-stage optical microscopy were further used to characterize the salts. The polymorph screen conducted on the salts suggested the absence of additional polymorphs at 1 g scale.
Assuntos
Diarilquinolinas , Sais , Pós , Solubilidade , Difração de Raios XRESUMO
Bedaquiline is one of two important new drugs for the treatment of drug-resistant tuberculosis (TB). It is marketed in the US as its fumarate salt, but only a few salts of bedaquiline have been structurally described so far. We present here five crystal structures of bedaquilinium maleate {systematic name: [4-(6-bromo-2-meth-oxy-quinolin-3-yl)-3-hy-droxy-3-(naphthalen-1-yl)-4-phenyl-but-yl]di-methyl-aza-nium 3-carb-oxy-prop-2-enoate}, C32H32BrN2O2 +·C4H3O4 -, namely, a hemihydrate, a tetra-hydro-furan (THF) solvate, a mixed acetone/hexane solvate, an ethyl acetate solvate, and a solvate-free structure obtained from the acetone/hexane solvate by in situ single-crystal-to-single-crystal desolvation. All salts exhibit a 1:1 cation-to-anion ratio, with the anion present as monoanionic hydro-maleate and a singly protonated bedaquilinium cation. The maleate exhibits the strong intra-molecular hydrogen bond typical for cis-di-carb-oxy-lic acid anions. The conformations of the cations and packing inter-actions in the maleate salts are compared to those of free base bedaquiline and other bedaquilinium salts.
RESUMO
Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or polyethylene glycol (PEG)-interferon-alpha alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of 70 (SCH 503034), a novel, potent, selective, orally bioavailable NS3 protease inhibitor that has been advanced to clinical trials in human beings for the treatment of hepatitis C viral infections is described. X-ray structure of inhibitor 70 complexed with the NS3 protease and biological data are also discussed.