Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(20): e202200038, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35157359

RESUMO

Carbon nanodots are currently one of the hot topics in the nanomaterials world, due to their accessible synthesis and promising features. However, the purification of these materials is still a critical aspect, especially for syntheses involving molecular precursors. Indeed, the presence of unreacted species or small organic molecules formed during solvothermal treatments can affect the properties of the synthesized nanomaterials. To illustrate the extreme importance of this issue, we present two case studies in which insufficient purification results in misleading conclusions regarding the chiral and fluorescent properties of the investigated materials. Key to identify molecular species is the use of nuclear magnetic resonance, which proves to be an effective tool. Our work highlights the need to include nuclear magnetic resonance as a standard characterization technique for carbon-based nanomaterials, to minimize the risk of observing properties that arise from molecular species, rather than the target carbon nanodots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA