Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochemistry ; 58(9): 1236-1245, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30715856

RESUMO

Non-typhoidal Salmonella can colonize the gastrointestinal system of cattle and can also cause significant food-borne disease in humans. The use of a library of single-gene deletions in Salmonella enterica serotype Typhimurium allowed identification of several proteins that are under selection in the intestine of cattle. STM2437 ( yfeJ) encodes one of these proteins, and it is currently annotated as a type I glutamine amidotransferase. STM2437 was purified to homogeneity, and its catalytic properties with a wide range of γ-glutamyl derivatives were determined. The catalytic efficiency toward the hydrolysis of l-glutamine was extremely weak with a kcat/ Km value of 20 M-1 s-1. γ-l-Glutamyl hydroxamate was identified as the best substrate for STM2437, with a kcat/ Km value of 9.6 × 104 M-1 s-1. A homology model of STM2437 was constructed on the basis of the known crystal structure of a protein of unknown function (Protein Data Bank entry 3L7N ), and γ-l-glutamyl hydroxamate was docked into the active site based on the binding of l-glutamine in the active site of carbamoyl phosphate synthetase. Acivicin was shown to inactivate the enzyme by reaction with the active site cysteine residue and the subsequent loss of HCl. Mutation of Cys91 to serine completely abolished catalytic activity. Inactivation of STM2437 did not affect the ability of this strain to colonize mice, but it inhibited the growth of S. enterica Typhimurium in bacteriologic media containing γ-l-glutamyl hydroxamate.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Salmonelose Animal/microbiologia , Animais , Proteínas de Bactérias/genética , Bovinos , Doenças dos Bovinos/microbiologia , Colite/microbiologia , Colite/veterinária , Ativação Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Glutamatos/metabolismo , Glutamatos/farmacologia , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Hidroxilamina/farmacologia , Isoxazóis/farmacologia , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Transferases de Grupos Nitrogenados/genética , Conformação Proteica , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Especificidade por Substrato
2.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396895

RESUMO

Salmonella enterica serovar Enteritidis is a common cause of foodborne illness in the United States. The bacterium can be transmitted to humans via contaminated chicken meat and eggs, and virulence in humans requires type III secretion system 1 (TTSS-1), encoded on Salmonella pathogenicity island 1 (SPI-1). Chickens often carry S Enteritidis subclinically, obscuring the role of SPI-1 in facilitating bacterial colonization. To evaluate the role of SPI-1 in the infection of chicks by Salmonella, we created and utilized strains harboring a stable fluorescent reporter fusion designed to quantify SPI-1 expression within the intestinal tracts of animals. Using mutants unable to express TTSS-1, we demonstrated the important role of the secretion system in facilitating bacterial colonization. We further showed that coinoculation of an SPI-1 mutant with the wild-type strain increased the number of mutant organisms in intestinal tissue and contents, suggesting that the wild type rescues the mutant. Our results support the hypothesis that SPI-1 facilitates S Enteritidis colonization of the chicken and make SPI-1 an attractive target in preventing Salmonella carriage and colonization in chickens to reduce contamination of poultry meat and eggs by this foodborne pathogen.


Assuntos
Proteínas de Bactérias , Portador Sadio/veterinária , Perfilação da Expressão Gênica , Intestinos/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/genética , Animais , Fusão Gênica Artificial , Portador Sadio/microbiologia , Galinhas , Feminino , Genes Reporter , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética
4.
PLoS Genet ; 11(9): e1005472, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26367458

RESUMO

Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate, but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.


Assuntos
DNA de Cadeia Simples/genética , Intestinos/microbiologia , Anaerobiose , Animais , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Camundongos , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento
5.
Infect Immun ; 85(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27849183

RESUMO

Salmonellae are pathogenic bacteria that cause significant morbidity and mortality in humans worldwide. Salmonellae establish infection and avoid clearance by the immune system by mechanisms that are not well understood. We previously showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium) inhibits T cell responses and mediates virulence. In addition, we previously showed that asparagine deprivation such as that mediated by l-asparaginase II of S Typhimurium causes suppression of activation-induced T cell metabolic reprogramming. Here, we report that STM3997, which encodes a homolog of disulfide bond protein A (dsbA) of Escherichia coli, is required for l-asparaginase II stability and function. Furthermore, we report that l-asparaginase II localizes primarily to the periplasm and acts together with l-asparaginase I to provide S Typhimurium the ability to catabolize asparagine and assimilate nitrogen. Importantly, we determined that, in a murine model of infection, S Typhimurium lacking both l-asparaginase I and II genes competes poorly with wild-type S Typhimurium for colonization of target tissues. Collectively, these results indicate that asparagine catabolism contributes to S Typhimurium virulence, providing new insights into the competition for nutrients at the host-pathogen interface.


Assuntos
Asparagina/metabolismo , Infecções por Salmonella/microbiologia , Salmonella/metabolismo , Salmonella/patogenicidade , Animais , Asparaginase/metabolismo , Catálise , Cisteína/metabolismo , Modelos Animais de Doenças , Estabilidade Enzimática , Feminino , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação , Nitrogênio/metabolismo , Salmonella/genética , Salmonella/imunologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/imunologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Virulência , Fatores de Virulência/genética
6.
Infect Immun ; 84(4): 1226-1238, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857572

RESUMO

Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection.


Assuntos
Galinhas , Salmonella typhimurium/genética , Seleção Genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia
7.
Mol Microbiol ; 89(3): 403-19, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23734719

RESUMO

Salmonella Typhimurium gene STM2215 (rtn) is conserved among many enterobacteriaceae. Mutants lacking STM2215 poorly colonized the liver and spleen in intraperitoneal infection of mice and poorly colonized the intestine and deeper tissues in oral infection. These phenotypes were complemented by a wild-type copy of STM2215 provided in trans. STM2215 deletion mutants grew normally in J774A.1 murine macrophages but were unable to invade Caco-2 colonic epithelial cells. Consistent with this finding, mutants in STM2215 produced lower levels of effectors of the TTSS-1. STM2215 is a predicted c-di-GMP phosphodiesterase, but lacks identifiable sensor domains. Biochemical analysis of STM2215 determined that it is located in the inner membrane and has c-di-GMP phosphodiesterase activity in vitro dependent on an intact EAL motif. Unlike some previously identified members of this family, STM2215 did not affect motility, was expressed on plates, and in liquid media at late exponential and early stationary phase during growth. Defined mutations in STM2215 revealed that neither the predicted periplasmic domain nor the anchoring of the protein to the inner membrane is necessary for the activity of this protein during infection. However, the EAL domain of STM2215 is required during infection, suggesting that its phosphodiesterase activity is necessary during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Células CACO-2 , Feminino , Deleção de Genes , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína , Salmonella typhimurium/genética
8.
Infect Immun ; 81(11): 4311-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24019407

RESUMO

Cattle are naturally infected with Salmonella enterica serotype Typhimurium and exhibit pathological features of enteric salmonellosis that closely resemble those in humans. Cattle are the most relevant model of gastrointestinal disease resulting from nontyphoidal Salmonella infection in an animal with an intact microbiota. We utilized this model to screen a library of targeted single-gene deletion mutants to identify novel genes of Salmonella Typhimurium required for survival during enteric infection. Fifty-four candidate mutants were strongly selected, including numerous mutations in genes known to be important for gastrointestinal survival of salmonellae. Three genes with previously unproven phenotypes in gastrointestinal infection were tested in bovine ligated ileal loops. Two of these mutants, STM3602 and STM3846, recapitulated the phenotype observed in the mutant pool. Complementation experiments successfully reversed the observed phenotypes, directly linking these genes to the colonization defects of the corresponding mutant strains. STM3602 encodes a putative transcriptional regulator that may be involved in phosphonate utilization, and STM3846 encodes a retron reverse transcriptase that produces a unique RNA-DNA hybrid molecule called multicopy single-stranded DNA. The genes identified in this study represent an exciting new class of virulence determinants for further mechanistic study to elucidate the strategies employed by Salmonella to survive within the small intestines of cattle.


Assuntos
Doenças dos Bovinos/microbiologia , Gastroenterite/microbiologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Fatores de Virulência/metabolismo , Animais , Bovinos , Modelos Animais de Doenças , Gastroenterite/veterinária , Deleção de Genes , Teste de Complementação Genética , Testes Genéticos , Salmonella typhimurium/genética , Fatores de Virulência/genética
9.
Metabolites ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984790

RESUMO

The emergence of bacterial drug resistance is often viewed as the next great health crisis of our time. While more antimicrobial agents are urgently needed, very few new antibiotics are currently in the production pipeline. Here, we aim to identify and characterize novel antimicrobial natural products from a model dioicous moss, Ceratodon purpureus. We collected secreted moss exudate fractions from two C. purpureus strains, male R40 and female GG1. Exudates from the female C. purpureus strain GG1 did not exhibit inhibitory activity against any tested bacteria. However, exudates from the male moss strain R40 exhibited strong inhibitory properties against several species of Gram-positive bacteria, including Staphylococcus aureus and Enterococcus faecium, though they did not inhibit the growth of Gram-negative bacteria. Antibacterial activity levels in C. purpureus R40 exudates significantly increased over four weeks of moss cultivation in liquid culture. Size fractionation experiments indicated that the secreted bioactive compounds have a relatively low molecular weight of less than 1 kDa. Additionally, the R40 exudate compounds are thermostable and not sensitive to proteinase K treatment. Overall, our results suggest that the bioactive compounds present in C. purpureus R40 exudates can potentially add new options for treating infections caused by antibiotic-resistant Gram-positive bacteria.

10.
mBio ; 14(1): e0244422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475774

RESUMO

Chicks are ideal to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Taxonomic/metagenomic analyses captured the development of the chick microbiota in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm) during development. Taxonomic analysis suggests that colonization by the chicken microbiota takes place in several waves. The cecal microbiota stabilizes at day 12 posthatch with prominent Gammaproteobacteria and Clostridiales. Introduction of S. Typhimurium at day 4 posthatch disrupted the expected waves of intestinal colonization. Taxonomic and metagenomic shotgun sequencing analyses allowed us to identify species present in uninfected chicks. Untargeted metabolomics suggested different metabolic activities in infected chick microbiota. This analysis and gas chromatography-mass spectrometry on ingesta confirmed that lactic acid in cecal content coincides with the stable presence of enterococci in STm-infected chicks. Unique metabolites, including 2-isopropylmalic acid, an intermediate in the biosynthesis of leucine, were present only in the cecal content of STm-infected chicks. The metagenomic data suggested that the microbiota in STm-infected chicks contained a higher abundance of genes, from STm itself, involved in branched-chain amino acid synthesis. We generated an ilvC deletion mutant (STM3909) encoding ketol-acid-reductoisomerase, a gene required for the production of l-isoleucine and l-valine. ΔilvC mutants are disadvantaged for growth during competitive infection with the wild type. Providing the ilvC gene in trans restored the growth of the ΔilvC mutant. Our integrative approach identified biochemical pathways used by STm to establish a colonization niche in the chick intestine during development. IMPORTANCE Chicks are an ideal model to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Using taxonomic and metagenomic analyses, we captured the development of chick microbiota to 19 days posthatch in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm). We show that normal development of the microbiota takes place in waves and is altered in the presence of a pathogen. Metagenomics and metabolomics suggested that branched-chain amino acid biosynthesis is especially important for Salmonella growth in the infected chick intestine. Salmonella mutants unable to make l-isoleucine and l-valine colonize the chick intestine poorly. Restoration of the pathway for biosynthesis of these amino acids restored the colonizing ability of Salmonella. Integration of multiple analyses allowed us to correctly identify biochemical pathways used by Salmonella to establish a niche for colonization in the chick intestine during development.


Assuntos
Microbiota , Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas/microbiologia , Isoleucina , Salmonella typhimurium/metabolismo , Ceco/microbiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Valina/metabolismo , Salmonelose Animal/microbiologia , Doenças das Aves Domésticas/microbiologia
11.
Antibiotics (Basel) ; 11(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892395

RESUMO

Plants synthetize a large spectrum of secondary metabolites with substantial structural and functional diversity, making them a rich reservoir of new biologically active compounds. Among different plant lineages, the evolutionarily ancient branch of non-vascular plants (Bryophytes) is of particular interest as these organisms produce many unique biologically active compounds with highly promising antibacterial properties. Here, we characterized antibacterial activity of metabolites produced by different ecotypes (strains) of the model mosses Physcomitrium patens and Sphagnum fallax. Ethanol and hexane moss extracts harbor moderate but unstable antibacterial activity, representing polar and non-polar intracellular moss metabolites, respectively. In contrast, high antibacterial activity that was relatively stable was detected in soluble exudate fractions of P. patens moss. Antibacterial activity levels in P. patens exudates significantly increased over four weeks of moss cultivation in liquid culture. Interestingly, secreted moss metabolites are only active against a number of Gram-positive, but not Gram-negative, bacteria. Size fractionation, thermostability and sensitivity to proteinase K assays indicated that the secreted bioactive compounds are relatively small (less than <10 kDa). Further analysis and molecular identification of antibacterial exudate components, combined with bioinformatic analysis of model moss genomes, will be instrumental in the identification of specific genes involved in the bioactive metabolite biosynthesis.

12.
mSphere ; 7(6): e0021222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36218346

RESUMO

Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S. marcescens infections, it is critical to identify additional targets for bacterial growth inhibition. We found that extracellular metabolites produced by the wild-type organism in response to peroxide exposure had a protective effect on an otherwise-H2O2-sensitive ΔmacAB indicator strain. Detailed analysis of the conditioned medium demonstrated that the protective effect was associated with a low-molecular-weight heat-sensitive and proteinase K-sensitive metabolite. Furthermore, liquid chromatography-tandem mass spectrometry analysis of the low-molecular-weight proteins present in the conditioned medium led to identification of the previously uncharacterized DUF1471-containing protein TBU67220 (SrfN). We found that loss of the srfN gene did not have an impact on the production of extracellular enzymes. However, the S. marcescens mutant lacking SrfN was significantly more sensitive to growth in medium with a low pH and to exposure to oxidative stress. Both defects were fully rescued by complementation. Thus, our results indicate that SrfN, a low-molecular-weight DUF1471-containing protein, is involved in S. marcescens SM6 adaptation to adverse environmental conditions. IMPORTANCE Serratia marcescens is ubiquitous in the environment and can survive in water, soil, plants, insects, and animals, and it can also cause infections in humans. In the face of disturbances such as oxidative or low-pH stress, bacteria adapt, survive, and recover through several mechanisms, including changes in their secretome. We show that a hydrogen peroxide-exposed S. marcescens milieu contains a small previously uncharacterized DUF1471-containing protein similar to the SrfN protein in Salmonella enterica serovar Typhimurium, and we illustrate the role of this protein in bacterial survival during acid and oxidative stresses.


Assuntos
Peróxido de Hidrogênio , Serratia marcescens , Humanos , Animais , Serratia marcescens/genética , Serratia marcescens/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Meios de Cultivo Condicionados , Antibacterianos/metabolismo , Estresse Oxidativo
13.
PLoS Genet ; 4(4): e1000047, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18404213

RESUMO

Coordination between cellular metabolism and DNA replication determines when cells initiate division. It has been assumed that metabolism only plays a permissive role in cell division. While blocking metabolism arrests cell division, it is not known whether an up-regulation of metabolic reactions accelerates cell cycle transitions. Here, we show that increasing the amount of mitochondrial DNA accelerates overall cell proliferation and promotes nuclear DNA replication, in a nutrient-dependent manner. The Sir2p NAD+-dependent de-acetylase antagonizes this mitochondrial role. We found that cells with increased mitochondrial DNA have reduced Sir2p levels bound at origins of DNA replication in the nucleus, accompanied with increased levels of K9, K14-acetylated histone H3 at those origins. Our results demonstrate an active role of mitochondrial processes in the control of cell division. They also suggest that cellular metabolism may impact on chromatin modifications to regulate the activity of origins of DNA replication.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , DNA Mitocondrial/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Ciclo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , DNA Fúngico/genética , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Modelos Biológicos , Mutação , Origem de Replicação , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
mSphere ; 6(2)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692192

RESUMO

Serratia marcescens is an emerging pathogen with increasing clinical importance due to its intrinsic resistance to several classes of antibiotics. The chromosomally encoded drug efflux pumps contribute to antibiotic resistance and represent a major challenge for the treatment of bacterial infections. The ABC-type efflux pump MacAB was previously linked to macrolide resistance in Escherichia coli and Salmonella enterica serovar Typhimurium. The role of the MacAB homolog in antibiotic resistance of S. marcescens is currently unknown. We found that an S. marcescens mutant lacking the MacAB pump did not show increased sensitivity to the macrolide antibiotic erythromycin but was significantly more sensitive to aminoglycoside antibiotics and polymyxins. We also showed that, in addition to its role in drug efflux, the MacAB efflux pump is required for swimming motility and biofilm formation. We propose that the motility defect of the ΔmacAB mutant is due, at least in part, to the loss of functional flagella on the bacterial surface. Furthermore, we found that the promoter of the MacAB efflux pump was active during the initial hours of growth in laboratory medium and that its activity was further elevated in the presence of hydrogen peroxide. Finally, we demonstrate a complete loss of ΔmacAB mutant viability in the presence of peroxide, which is fully restored by complementation. Thus, the S. marcescens MacAB efflux pump is essential for survival during oxidative stress and is involved in protection from polymyxins and aminoglycoside antibiotics.IMPORTANCE The opportunistic pathogen Serratia marcescens can cause urinary tract infections, respiratory infections, meningitis, and sepsis in immunocompromised individuals. These infections are challenging to treat due to the intrinsic resistance of S. marcescens to an extensive array of antibiotics. Efflux pumps play a crucial role in protection of bacteria from antimicrobials. The MacAB efflux pump, previously linked to efflux of macrolides in Escherichia coli and protection from oxidative stress in Salmonella enterica serovar Typhimurium, is not characterized in S. marcescens We show the role of the MacAB efflux pump in S. marcescens protection from aminoglycoside antibiotics and polymyxins, modulation of bacterial motility, and biofilm formation, and we illustrate the essential role for this pump in bacterial survival during oxidative stress. Our findings make the MacAB efflux pump an attractive target for inhibition to gain control over S. marcescens infections.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Polimixinas/farmacologia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Serratia marcescens/metabolismo
15.
J Bacteriol ; 191(8): 2843-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19218378

RESUMO

Non-subspecies I salmonellae are commensals of cold-blooded vertebrates and cause sporadic disease in mammals. The reasons why non-subspecies I salmonellae do not circulate in populations of warm-blooded vertebrates, but instead only cause occasional disease in this niche, are unknown. We examined the ability of Salmonella enterica subsp. IIIa (subsp. arizonae) and subsp. IIIb (subsp. diarizonae) isolates to grow competitively with subspecies I (serovar Typhimurium) ATCC 14028 in vitro, to colonize Salmonella-sensitive BALB/c mice, and to persist in the intestine of Salmonella-resistant CBA/J mice in competitive infections. Subspecies IIIa had severely reduced intestinal colonization, intestinal persistence, and systemic spread in mice. Subspecies IIIa is nonmotile on swarming agar and thus may also have reduced motility under viscous conditions in vivo. Surprisingly, subspecies IIIb colonizes the intestinal tract of BALB/c mice normally yet does not spread systemically. Subspecies IIIb colonization of the intestine of CBA/J mice is reduced late in infection. In order to understand why these isolates do not colonize systemic sites, we determined that subspecies IIIa and IIIb are not internalized well and do not replicate in J774-A.1 murine macrophages, despite normal adherence to these cells. We further show that selected effectors of both type III secretion systems 1 and 2 are secreted by subspecies IIIa and IIIb in vitro but that each of these isolates secretes a different combination of effectors. We outline the phenotypic differences between these subspecies and subspecies I and provide a possible explanation for the inability of these strains to spread systemically in murine models.


Assuntos
Salmonelose Animal/microbiologia , Salmonella enterica/patogenicidade , Animais , Bacteriemia/microbiologia , Aderência Bacteriana , Linhagem Celular , Contagem de Colônia Microbiana , Trato Gastrointestinal/microbiologia , Locomoção , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Salmonella arizonae/patogenicidade , Salmonella typhimurium/patogenicidade , Virulência , Fatores de Virulência/metabolismo
16.
Mol Microbiol ; 70(5): 1105-19, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18826410

RESUMO

Salmonella enterica subspecies I serotypes are responsible for the vast majority of salmonellosis in mammals and birds, yet only a few factors specific to this group that allow them to persist in this niche have been identified. We show that STM0557, a S. enterica subspecies I-specific gene encoding an inner membrane protein, is critical for faecal shedding and intestinal persistence of S. enterica serotype Typhimurium ATCC14028 in Salmonella-resistant mice, but mutations in this gene do not diminish short-term intestinal colonization or invasion of cultured epithelial cells. STM0557 and two neighbouring genes, located on a pathogenicity island termed SPI-16, resemble genes of the gtrA,B, gtr(type) cluster in seroconverting bacteriophages. In general, the gtr genes encode proteins responsible for serotype conversion of the infected bacterium by addition glucose residues to repeating O-antigen subunits of lipopolysaccharide (LPS). In lysogenized Shigella, such modifications have been previously shown to be constitutively expressed and to facilitate invasion of host cells. We show that serotype Typhimurium gtr orthologues, STM0557-0559, are responsible for 'form variation' or glucosylation of the O12 antigen galactose (4 position) to generate the 12-2 variant. Form variation in Typhimurium is not constitutive, but occurred upon exposure and during intracellular growth of serotype Typhimurium in J774 macrophages. Our data suggest that the 12-2 antigen is a S. enterica subspecies I-specific LPS modification that enhances long-term intestinal colonization, and is in contrast to the role of O-antigen variation described for Shigella.


Assuntos
Intestinos/microbiologia , Antígenos O/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Animais , Células CACO-2 , Clonagem Molecular , DNA Bacteriano/genética , Deleção de Genes , Genes Bacterianos , Ilhas Genômicas , Humanos , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Mutação , Antígenos O/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Especificidade da Espécie , Virulência
17.
Front Microbiol ; 10: 1796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456763

RESUMO

"Heteroresistance" is a widely applied term that characterizes most of the multidrug-resistant microorganisms. In microbiological practice, the word "heteroresistance" indicates diverse responses to specific antibiotics by bacterial subpopulations in the same patient. These resistant subpopulations of heteroresistant strains do not respond to antibiotic therapy in vitro or in vivo. Presently, there is no standard protocol available for the treatment of infections caused by heteroresistant Helicobacter pylori in clinical settings, at least according to recent guidelines. Thus, there is a definite need to open a new discussion on how to recognize, how to screen, and how to eliminate those problematic strains in clinical and environmental samples. Since there is great interest in developing new strategies to improve the eradication rate of anti-H. pylori treatments, the presence of heteroresistant strains/clones among clinical isolates of the bacteria should be taken into account. Indeed, increased knowledge of gastroenterologists about the existence of heteroresistance phenomena is highly required. Moreover, the accurate breakpoints should be examined/determined in order to have a solid statement of heteroresistance among the H. pylori isolates. The primary definition of heteroresistance was about coexistence of both resistant and susceptible isolates at the similar gastric microniche at once, while we think that it can be happened subsequently as well. The new guidelines should include a personalized aspect in the standard protocol to select a precise, effective antibiotic therapy for infected patients and also address the problems of regional antibiotic susceptibility profiles.

18.
Microbiol Resour Announc ; 8(18)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048396

RESUMO

Here we present a draft genome sequence of laboratory strain Serratia marcescens SM6. Using the antiSMASH 5.0 prediction tool, we identified five biosynthetic gene clusters involved in secondary metabolite production (two siderophores and a biosurfactant serratamolide, a glucosamine derivative, and a thiopeptide). Whole-genome sequencing information will be useful for the detailed study of metabolites produced by Serratia marcescens.

19.
BMC Microbiol ; 8: 182, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18922185

RESUMO

BACKGROUND: Salmonellosis is one of the most important bacterial food borne illnesses worldwide. A major source of infection for humans is consumption of chicken or egg products that have been contaminated with Salmonella enterica serotype Typhimurium, however our knowledge regarding colonization and persistence factors in the chicken is small. RESULTS: We compared intestinal and systemic colonization of 1-week-old White Leghorn chicks and Salmonella-resistant CBA/J mice during infection with Salmonella enterica serotype Typhimurium ATCC14028, one of the most commonly studied isolates. We also studied the distribution of wild type serotype Typhimurium ATCC14028 and an isogenic invA mutant during competitive infection in the cecum of 1-week-old White Leghorn chicks and 8-week-old CBA/J mice. We found that although the systemic levels of serotype Typhimurium in both infected animal models are low, infected mice have significant splenomegaly beginning at 15 days post infection. In the intestinal tract itself, the cecal contents are the major site for recovery of serotype Typhimurium in the cecum of 1-week-old chicks and Salmonella-resistant mice. Additionally we show that only a small minority of Salmonellae are intracellular in the cecal epithelium of both infected animal models, and while SPI-1 is important for successful infection in the murine model, it is important for association with the cecal epithelium of 1-week-old chicks. Finally, we show that in chicks infected with serotype Typhimurium at 1 week of age, the level of fecal shedding of this organism does not reflect the level of cecal colonization as it does in murine models. CONCLUSION: In our study, we highlight important differences in systemic and intestinal colonization levels between chick and murine serotype Typhimurium infections, and provide evidence that suggests that the role of SPI-1 may not be the same during colonization of both animal models.


Assuntos
Ceco/microbiologia , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/isolamento & purificação , Animais , Proteínas de Bactérias/genética , Fezes/microbiologia , Feminino , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos CBA , Modelos Animais , Salmonella typhimurium/genética , Esplenomegalia/microbiologia
20.
PLoS One ; 13(9): e0203698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30204776

RESUMO

Neutrophils are innate immune response cells designed to kill invading microorganisms. One of the mechanisms neutrophils use to kill bacteria is generation of damaging reactive oxygen species (ROS) via the respiratory burst. However, during enteric salmonellosis, neutrophil-derived ROS actually facilitates Salmonella expansion and survival in the gut. This seeming paradox led us to hypothesize that Salmonella may possess mechanisms to influence the neutrophil respiratory burst. In this work, we used an in vitro Salmonella-neutrophil co-culture model to examine the impact of enteric infection relevant virulence factors on the respiratory burst of human neutrophils. We report that neutrophils primed with granulocyte-macrophage colony stimulating factor and suspended in serum containing complement produce a robust respiratory burst when stimulated with viable STm. The magnitude of the respiratory burst increases when STm are grown under conditions to induce the expression of the type-3 secretion system-1. STm mutants lacking the type-3 secretion system-1 induce less neutrophil ROS than the virulent WT. In addition, we demonstrate that flagellar motility is a significant agonist of the neutrophil respiratory burst. Together our data demonstrate that both the type-3 secretion system-1 and flagellar motility, which are established virulence factors in enteric salmonellosis, also appear to directly influence the magnitude of the neutrophil respiratory burst in response to STm in vitro.


Assuntos
Fímbrias Bacterianas/fisiologia , Neutrófilos/microbiologia , Explosão Respiratória , Salmonella/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Genótipo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Interleucina-8/farmacologia , Neutrófilos/citologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos , Salmonella/genética , Sistemas de Secreção Tipo III/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA