Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Ophthalmology ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151755

RESUMO

PURPOSE: To quantify morphological changes of the photoreceptors (PR) and retinal pigment epithelium (RPE) layers under pegcetacoplan therapy in geographic atrophy (GA) using deep learning-based analysis of optical coherence tomography (OCT) images. DESIGN: Post-hoc longitudinal image analysis SUBJECTS: Patients with GA due to age-related macular degeneration from two prospective randomized phase III clinical trials (OAKS and DERBY) METHODS: Deep learning-based segmentation of RPE loss and PR degeneration, defined as loss of the ellipsoid zone (EZ) layer on OCT, over 24 months on SD-OCT images MAIN OUTCOME MEASURES: Change in the mean area of RPE loss and EZ loss over time in the pooled sham arms and the monthly (PM)/every other month (PEOM) treatment arms RESULTS: 897 eyes of 897 patients were included. There was a therapeutic reduction of RPE loss growth by 22%/20% in OAKS and 27%/21% in DERBY for PM/PEOM compared to sham, respectively, at 24 months. The reduction on the EZ level was significantly higher with 53%/46% in OAKS and 47%/46% in DERBY for PM/PEOM compared to sham at 24 months. The baseline EZ-RPE difference had an impact on disease activity and therapeutic response. The therapeutic benefit for RPE loss growth increased with larger EZ-RPE difference quartiles from 21.9%, 23.1%, 23.9% to 33.6% for PM vs. sham (all p<0.01) and from 13.6% (p=0.11), 23.8%, 23.8% to 20.0% for PEOM vs. sham (p<0.01) in quartiles 1,2,3 and 4, respectively, at 24 months. Regarding EZ layer maintenance, the therapeutic reduction of loss increased from 14.8% (p=0.09), 33.3%, 46.6% to 77.8% (p<0.0001) between PM and sham and from 15.9% (p=0.08), 33.8%, 52.0% to 64.9% (p<0.0001) between PEOM and sham for quartiles 1-4 at 24 months. CONCLUSION: OCT-based AI analysis objectively identifies and quantifies PR and RPE degeneration in GA. Reductions in further PR degeneration consistent with EZ loss on OCT are even higher than the effect on RPE loss in phase 3 trials of pegcetacoplan treatment. The EZ-RPE difference has a strong impact on disease progression and therapeutic response. Identification of patients with higher EZ-RPE loss difference may become an important criterion for the management of GA secondary to AMD.

2.
Retina ; 44(8): 1351-1359, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047196

RESUMO

PURPOSE: In this study, differences in retinal feature visualization of high-resolution optical coherence tomography (OCT) devices were investigated with different axial resolutions in quantifications of retinal pigment epithelium and photoreceptors (PRs) in intermediate age-related macular degeneration. METHODS: Patients were imaged with standard SPECTRALIS HRA + OCT and the investigational High-Res OCT device (both by Heidelberg Engineering, Heidelberg, Germany). Drusen, retinal pigment epithelium, and PR layers were segmented using validated artificial intelligence-based algorithms followed by manual corrections. Thickness and drusen maps were computed for all patients. Loss and thickness measurements were compared between devices, drusen versus nondrusen areas, and early treatment diabetic retinopathy study subfields using mixed-effects models. RESULTS: Thirty-three eyes from 28 patients with intermediate age-related macular degeneration were included. Normalized PR integrity loss was significantly higher with 4.6% for standard OCT compared with 2.5% for High-Res OCT. The central and parafoveal PR integrity loss was larger than the perifoveal loss (P < 0.05). Photoreceptor thickness was increased on High-Res OCT and in nondrusen regions (P < 0.001). Retinal pigment epithelium appeared thicker on standard OCT and above drusen (P < 0.01). CONCLUSION: Our study shows that High-Res OCT is able to identify the condition of investigated layers in intermediate age-related macular degeneration with higher precision. This improved in vivo imaging technology might promote our understanding of the pathophysiology and progression of age-related macular degeneration.


Assuntos
Epitélio Pigmentado da Retina , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Células Fotorreceptoras de Vertebrados/patologia , Acuidade Visual/fisiologia , Drusas Retinianas/diagnóstico , Drusas Retinianas/diagnóstico por imagem , Degeneração Macular/diagnóstico , Degeneração Macular/fisiopatologia , Pessoa de Meia-Idade
3.
Retina ; 42(5): 831-841, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34934034

RESUMO

PURPOSE: To investigate the correlation of volumetric measurements of intraretinal (IRF) and subretinal fluid obtained by deep learning and central retinal subfield thickness (CSFT) based on optical coherence tomography in retinal vein occlusion, diabetic macular edema, and neovascular age-related macular degeneration. METHODS: A previously validated deep learning-based approach was used for automated segmentation of IRF and subretinal fluid in spectral domain optical coherence tomography images. Optical coherence tomography volumes of 2.433 patients obtained from multicenter studies were analyzed. Fluid volumes were measured at baseline and under antivascular endothelial growth factor therapy in the central 1, 3, and 6 mm. RESULTS: Patients with neovascular age-related macular degeneration generally demonstrated the weakest association between CSFT and fluid volume measurements in the central 1 mm (0.107-0.569). In patients with diabetic macular edema, IRF correlated moderately with CSFT (0.668-0.797). In patients with retinal vein occlusion, IRF volumes showed a moderate correlation with CSFT (0.603-0.704). CONCLUSION: The correlation of CSFT and fluid volumes depends on the underlying pathology. Although the amount of central IRF seems to partly drive CSFT in diabetic macular edema and retinal vein occlusion, it has only a limited impact on patients with neovascular age-related macular degeneration. Our findings do not support the use of CSFT as a primary or secondary outcome measure for the quantification of exudative activity or treatment guidance.


Assuntos
Aprendizado Profundo , Retinopatia Diabética , Edema Macular , Oclusão da Veia Retiniana , Retinopatia Diabética/complicações , Humanos , Edema Macular/patologia , Retina/patologia , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/diagnóstico , Oclusão da Veia Retiniana/tratamento farmacológico
4.
Retina ; 42(9): 1673-1682, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994584

RESUMO

BACKGROUND/PURPOSE: To apply an automated deep learning automated fluid algorithm on data from real-world management of patients with neovascular age-related macular degeneration for quantification of intraretinal/subretinal fluid volumes in optical coherence tomography images. METHODS: Data from the Vienna Imaging Biomarker Eye Study (VIBES, 2007-2018) were analyzed. Databases were filtered for treatment-naive neovascular age-related macular degeneration with a baseline optical coherence tomography and at least one follow-up and 1,127 eyes included. Visual acuity and optical coherence tomography at baseline, Months 1 to 3/Years 1 to 5, age, sex, and treatment number were included. Artificial intelligence and certified manual grading were compared in a subanalysis of 20%. Main outcome measures were fluid volumes. RESULTS: Intraretinal/subretinal fluid volumes were maximum at baseline (intraretinal fluid: 21.5/76.6/107.1 nL; subretinal fluid 13.7/86/262.5 nL in the 1/3/6-mm area). Intraretinal fluid decreased to 5 nL at M1-M3 (1-mm) and increased to 11 nL (Y1) and 16 nL (Y5). Subretinal fluid decreased to a mean of 4 nL at M1-M3 (1-mm) and remained stable below 7 nL until Y5. Intraretinal fluid was the only variable that reflected VA change over time. Comparison with human expert readings confirmed an area under the curve of >0.9. CONCLUSION: The Vienna Fluid Monitor can precisely quantify fluid volumes in optical coherence tomography images from clinical routine over 5 years. Automated tools will introduce precision medicine based on fluid guidance into real-world management of exudative disease, improving clinical outcomes while saving resources.


Assuntos
Degeneração Macular , Degeneração Macular Exsudativa , Algoritmos , Inibidores da Angiogênese/uso terapêutico , Inteligência Artificial , Pré-Escolar , Humanos , Injeções Intravítreas , Degeneração Macular/tratamento farmacológico , Ranibizumab/uso terapêutico , Líquido Sub-Retiniano , Tomografia de Coerência Óptica/métodos , Fator A de Crescimento do Endotélio Vascular , Degeneração Macular Exsudativa/diagnóstico , Degeneração Macular Exsudativa/tratamento farmacológico
5.
Retina ; 41(11): 2221-2228, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830960

RESUMO

PURPOSE: To investigate associations between residual subretinal fluid (rSRF) volumes, quantified using artificial intelligence and treatment outcomes in a subretinal fluid (SRF)-tolerant treat-and-extend (T&E) regimen in neovascular age-related macular degeneration. METHODS: Patients enrolled in the prospective, multicenter FLUID study randomized in an SRF-tolerant T&E regimen were examined by spectral-domain optical coherence tomography and tested for best-corrected visual acuity (BCVA). Intraretinal fluid and SRF volumes were quantified using artificial intelligence tools. In total, 375 visits of 98 patients were divided into subgroups: extended intervals despite rSRF and extended intervals without fluid. Associations between BCVA change, SRF volume, subgroups, and treatment intervals were estimated using linear mixed models. RESULTS: In extended intervals despite rSRF, increased SRF was associated with reduced BCVA at the next visit in the central 1 mm (-0.138 letters per nL; P = 0.014) and 6 mm (-0.024 letters per nL; P = 0.049). A negative association between increased interval and BCVA change was found for rSRF in 1 mm and 6 mm (-0.250 and -0.233 letter per week interval, respectively; both P < 0.001). Extended intervals despite rSRF had significantly higher SRF volumes in the central 6 mm at the following visit (P = 0.002). CONCLUSION: Artificial intelligence-based analysis of extended visits despite rSRF demonstrated increasing SRF volumes associated with BCVA loss at the consecutive visit. This negative association contributes to the understanding of rSRF volumes on treatment outcomes in neovascular age-related macular degeneration.


Assuntos
Inteligência Artificial , Tolerância a Medicamentos , Angiofluoresceinografia/métodos , Ranibizumab/administração & dosagem , Líquido Sub-Retiniano/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Degeneração Macular Exsudativa/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Seguimentos , Fundo de Olho , Humanos , Injeções Intravítreas , Estudos Prospectivos , Líquido Sub-Retiniano/efeitos dos fármacos , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular , Degeneração Macular Exsudativa/diagnóstico
6.
Retina ; 41(6): 1318-1328, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33230065

RESUMO

PURPOSE: To investigate quantitative differences in fluid volumes between subretinal fluid (SRF)-tolerant and SRF-intolerant treat-and-extend regimens for neovascular age-related macular degeneration and analyze the association with best-corrected visual acuity. METHODS: Macular fluid (SRF and intraretinal fluid) was quantified on optical coherence tomography volumetric scans using a trained and validated deep learning algorithm. Fluid volumes and complete resolution was automatically assessed throughout the study. The impact of fluid location and volumes on best-corrected visual acuity was computed using mixed-effects regression models. RESULTS: Baseline fluid quantifications for 348 eyes from 348 patients were balanced (all P > 0.05). No quantitative differences in SRF/intraretinal fluid between the treatment arms was found at any study-specific time point (all P > 0.05). Compared with qualitative assessment, the proportion of eyes without SRF/intraretinal fluid did not differ between the groups at any time point (all P > 0.05). Intraretinal fluid in the central 1 mm and SRF in the 1-mm to 6-mm macular area were negatively associated with best-corrected visual acuity (-2.8 letters/100 nL intraretinal fluid, P = 0.007 and -0.20 letters/100 nL SRF, P = 0.005, respectively). CONCLUSION: Automated fluid quantification using artificial intelligence allows objective and precise assessment of macular fluid volume and location. Precise determination of fluid parameters will help improve therapeutic efficacy of treatment in neovascular age-related macular degeneration.


Assuntos
Algoritmos , Aprendizado Profundo , Líquido Intracelular/fisiologia , Retina/fisiologia , Líquido Sub-Retiniano/fisiologia , Acuidade Visual , Humanos , Tomografia de Coerência Óptica/métodos
7.
Ophthalmology ; 127(9): 1211-1219, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32327254

RESUMO

PURPOSE: Anti-vascular endothelial growth factor (VEGF) treatment of neovascular age-related macular degeneration (AMD) is a highly effective advance in the retinal armentarium. OCT offering 3-dimensional imaging of the retina is widely used to guide treatment. Although poor outcomes reported from clinical practice are multifactorial, availability of reliable, reproducible, and quantitative evaluation tools to accurately measure the fluid response, that is, a "VEGF meter," may be a better means of monitoring and treating than the current purely qualitative evaluation used in clinical practice. DESIGN: Post hoc analysis of a phase III, randomized, multicenter study. PARTICIPANTS: Study eyes of 1095 treatment-naive subjects receiving pro re nata (PRN) or monthly ranibizumab therapy according to protocol-specified criteria in the HARBOR study. METHODS: A deep learning method for localization and quantification of fluid in all retinal compartments was applied for automated segmentation of fluid with every voxel classified by a convolutional neural network (CNN). Three-dimensional volumes (nanoliters) for intraretinal fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachment (PED) were determined in 24 362 volume scans obtained from 1095 patients treated over 24 months in a phase III clinical trial with randomization to 2 drug dosages (0.5 mg and 2.0 mg ranibizumab) and 2 regimens (monthly and PRN). A multivariable mixed-effects regression model was used to test for differences in fluid between the arms and for fluid/function correlation. MAIN OUTCOME MEASURES: Fluid volume in nanoliters, structure-function as Pearson's correlation coefficient, and as a coefficient of determination (R2). RESULTS: Fluid volumes were quantified in all visits of all patients. Automated segmentation demonstrated characteristic response patterns for each fluid compartment individually: Intraretinal fluid showed the greatest and most rapid resolution, followed by SRF and PED the least. The loading dose treatment achieved resolution of all fluid types close to the lowest levels attainable. Dosage and regimen parameters correlated directly with resulting fluid volumes. Fluid/function correlation showed a volume-dependent negative impact of IRF on vision and weak positive prognostic effect of SRF. CONCLUSIONS: Automated quantification of the fluid response may improve therapeutic management of neovascular AMD, avoid discrepancies between clinicians/investigators, and establish structure/function correlations.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Ranibizumab/uso terapêutico , Líquido Sub-Retiniano/diagnóstico por imagem , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico , Idoso , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/fisiopatologia , Feminino , Humanos , Imageamento Tridimensional , Injeções Intravítreas , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Degeneração Macular Exsudativa/diagnóstico por imagem , Degeneração Macular Exsudativa/fisiopatologia
8.
Retina ; 40(6): 1070-1078, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30932998

RESUMO

PURPOSE: To characterize retinal morphology differences among different types of choroidal neovascularization and visual function changes at the onset of exudative age-related macular degeneration. METHODS: In a post hoc analysis of a prospective clinical study, 1,097 fellow eyes from subjects with choroidal neovascularization in the study eye enrolled in the HARBOR trial were evaluated. The onset of exudation was diagnosed on monthly optical coherence tomography by two masked graders. At conversion as well as 1 month earlier, pigment epithelial detachment, intraretinal cystoid fluid, subretinal fluid, subretinal hyperreflective material, as well as ellipsoid zone and external limiting membrane loss were quantitatively analyzed. Hyperreflective foci, retinal pigment epithelial defects, haze and vitreoretinal interface status were evaluated qualitatively. Main outcome measures included visual acuity and rates of morphologic features at conversion and 1 month earlier. RESULTS: New-onset exudation was detected in 92 eyes. One month before conversion, hyperreflective foci, pigment epithelial detachment, retinal pigment epithelial defects, and haze were present in the majority of eyes. At the onset of exudation, the volumes of intraretinal cystoid fluid, subretinal fluid, subretinal hyperreflective material and pigment epithelial detachment, and the areas of external limiting membrane and ellipsoid zone loss significantly increased. The mean vision loss was -2.2 letters. Pathognomonic patterns of the different choroidal neovascularization types were already apparent 1 month before conversion. CONCLUSION: Characteristic choroidal neovascularization-associated morphological changes are preceding disease conversion, while vision loss at the onset of exudation is minimal. Individual lesion types are related to specific changes in optical coherence tomography morphology already before the time of conversion. Our findings may help to elucidate the pathophysiology of neovascular age-related macular degeneration and support the diagnosis of imminent disease conversion.


Assuntos
Angiofluoresceinografia/métodos , Macula Lutea/patologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Degeneração Macular Exsudativa/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Seguimentos , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Degeneração Macular Exsudativa/fisiopatologia
9.
Ophthalmology ; 125(4): 549-558, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29224926

RESUMO

PURPOSE: Development and validation of a fully automated method to detect and quantify macular fluid in conventional OCT images. DESIGN: Development of a diagnostic modality. PARTICIPANTS: The clinical dataset for fluid detection consisted of 1200 OCT volumes of patients with neovascular age-related macular degeneration (AMD, n = 400), diabetic macular edema (DME, n = 400), or retinal vein occlusion (RVO, n = 400) acquired with Zeiss Cirrus (Carl Zeiss Meditec, Dublin, CA) (n = 600) or Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany) (n = 600) OCT devices. METHODS: A method based on deep learning to automatically detect and quantify intraretinal cystoid fluid (IRC) and subretinal fluid (SRF) was developed. The performance of the algorithm in accurately identifying fluid localization and extent was evaluated against a manual consensus reading of 2 masked reading center graders. MAIN OUTCOME MEASURES: Performance of a fully automated method to accurately detect, differentiate, and quantify intraretinal and SRF using area under the receiver operating characteristics curves, precision, and recall. RESULTS: The newly designed, fully automated diagnostic method based on deep learning achieved optimal accuracy for the detection and quantification of IRC for all 3 macular pathologies with a mean accuracy (AUC) of 0.94 (range, 0.91-0.97), a mean precision of 0.91, and a mean recall of 0.84. The detection and measurement of SRF were also highly accurate with an AUC of 0.92 (range, 0.86-0.98), a mean precision of 0.61, and a mean recall of 0.81, with superior performance in neovascular AMD and RVO compared with DME, which was represented rarely in the population studied. High linear correlation was confirmed between automated and manual fluid localization and quantification, yielding an average Pearson's correlation coefficient of 0.90 for IRC and of 0.96 for SRF. CONCLUSIONS: Deep learning in retinal image analysis achieves excellent accuracy for the differential detection of retinal fluid types across the most prevalent exudative macular diseases and OCT devices. Furthermore, quantification of fluid achieves a high level of concordance with manual expert assessment. Fully automated analysis of retinal OCT images from clinical routine provides a promising horizon in improving accuracy and reliability of retinal diagnosis for research and clinical practice in ophthalmology.


Assuntos
Aprendizado Profundo , Retinopatia Diabética/diagnóstico por imagem , Diagnóstico por Computador/métodos , Edema Macular/diagnóstico por imagem , Oclusão da Veia Retiniana/diagnóstico por imagem , Líquido Sub-Retiniano/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Degeneração Macular Exsudativa/diagnóstico por imagem , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Acuidade Visual
10.
Bioengineering (Basel) ; 11(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39061764

RESUMO

Optical coherence tomography angiography (OCTA) provides detailed information on retinal blood flow and perfusion. Abnormal retinal perfusion indicates possible ocular or systemic disease. We propose a deep learning-based anomaly detection model to identify such anomalies in OCTA. It utilizes two deep learning approaches. First, a representation learning with a Vector-Quantized Variational Auto-Encoder (VQ-VAE) followed by Auto-Regressive (AR) modeling. Second, it exploits epistemic uncertainty estimates from Bayesian U-Net employed to segment the vasculature on OCTA en face images. Evaluation on two large public datasets, DRAC and OCTA-500, demonstrates effective anomaly detection (an AUROC of 0.92 for the DRAC and an AUROC of 0.75 for the OCTA-500) and localization (a mean Dice score of 0.61 for the DRAC) on this challenging task. To our knowledge, this is the first work that addresses anomaly detection in OCTA.

11.
IEEE Trans Med Imaging ; 43(3): 1165-1179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37934647

RESUMO

Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE cross-sectional prediction challenge dataset.


Assuntos
Doença de Alzheimer , Atrofia Geográfica , Humanos , Doença de Alzheimer/diagnóstico por imagem , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Progressão da Doença
12.
IEEE J Biomed Health Inform ; 28(4): 2235-2246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206782

RESUMO

The use of multimodal imaging has led to significant improvements in the diagnosis and treatment of many diseases. Similar to clinical practice, some works have demonstrated the benefits of multimodal fusion for automatic segmentation and classification using deep learning-based methods. However, current segmentation methods are limited to fusion of modalities with the same dimensionality (e.g., 3D + 3D, 2D + 2D), which is not always possible, and the fusion strategies implemented by classification methods are incompatible with localization tasks. In this work, we propose a novel deep learning-based framework for the fusion of multimodal data with heterogeneous dimensionality (e.g., 3D + 2D) that is compatible with localization tasks. The proposed framework extracts the features of the different modalities and projects them into the common feature subspace. The projected features are then fused and further processed to obtain the final prediction. The framework was validated on the following tasks: segmentation of geographic atrophy (GA), a late-stage manifestation of age-related macular degeneration, and segmentation of retinal blood vessels (RBV) in multimodal retinal imaging. Our results show that the proposed method outperforms the state-of-the-art monomodal methods on GA and RBV segmentation by up to 3.10% and 4.64% Dice, respectively.


Assuntos
Retina , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos
13.
Eye (Lond) ; 38(5): 863-870, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37875700

RESUMO

BACKGROUND/OBJECTIVES: To analyse short-term changes of mean photoreceptor thickness (PRT) on the ETDRS-grid after vitrectomy and membrane peeling in patients with epiretinal membrane (ERM). SUBJECTS/METHODS: Forty-eight patients with idiopathic ERM were included in this prospective study. Study examinations comprised best-corrected visual acuity (BCVA) and optical coherence tomography (OCT) before surgery, 1 week (W1), 1 month (M1) and 3 months (M3) after surgery. Mean PRT was assessed using an automated algorithm and correlated with BCVA and central retinal thickness (CRT). RESULTS: Regarding PRT changes of the study eye in comparison to baseline values, a significant decrease at W1 in the 1 mm, 3 mm and 6 mm area (all p-values < 0.001), at M1 (p = 0.009) and M3 (p = 0.019) in the central 1 mm area, a significant increase at M3 in the 6 mm area (p < 0.001), but no significant change at M1 in the 3 mm and 6 mm area and M3 in the 3 mm area (all p-values > 0.05) were observed. BCVA increased significantly from baseline to M3 (0.3LogMAR-0.15LogMAR, Snellen equivalent = 20/40-20/28 respectively; p < 0.001). There was no correlation between baseline PRT and BCVA at any visit after surgery, nor between PRT and BCVA at any visit (all p-values > 0.05). Decrease in PRT in the 1 mm (p < 0.001), 3 mm (p = 0.013) and 6 mm (p = 0.034) area after one week correlated with the increase in CRT (449.9 µm-462.2 µm). CONCLUSIONS: Although the photoreceptor layer is morphologically affected by ERMs and after their surgical removal, it is not correlated to BCVA. Thus, patients with photoreceptor layer alterations due to ERM may still benefit from surgery and achieve good functional rehabilitation thereafter.


Assuntos
Membrana Epirretiniana , Humanos , Membrana Epirretiniana/cirurgia , Estudos Prospectivos , Estudos Retrospectivos , Retina , Tomografia de Coerência Óptica/métodos , Vitrectomia/métodos
14.
Sci Rep ; 14(1): 19278, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164449

RESUMO

To investigate quantitative associations between AI-assessed disease activity and optical coherence tomography angiography (OCTA)-derived parameters in patients with neovascular age-related macular degeneration (nAMD) undergoing anti-VEGF therapy. OCTA and SD-OCT images obtained from multicenter, randomized study data were evaluated. A deep learning algorithm (RetInSight) was used to detect and quantify macular fluid on SD-OCT. Mixed effects models were applied to evaluate correlations between fluid volumes, macular neovascularization (MNV)-type and OCTA-derived MNV parameters; lesion size (LS) and vessel area (NVA). 230 patients were included. A significant positive correlation was observed between SRF and NVA (estimate = 199.8 nl/mm2, p = 0.023), while a non-significant but negative correlation was found between SRF and LS (estimate = - 71.3 nl/mm2, p = 0.126). The presence of Type I and Type II MNV was associated with significantly less intraretinal fluid (IRF) compared to Type III MNV (estimate type I:- 52.1 nl, p = 0.019; estimate type II:- 51.7 nl, p = 0.021). A significant correlation was observed between pigment epithelial detachment (PED) and the interaction between NVA and LS (estimate:28.97 nl/mm2; p = 0.012). Residual IRF at week 12 significantly correlated to baseline NVA (estimate:38.1 nl/mm2; p = 0.015) and LS (estimate:- 22.6 nl/mm2; p = 0.012). Fluid in different compartments demonstrated disparate associations with MNV OCTA features. While IRF at baseline was most pronounced in type III MNV, residual IRF was driven by neovascular MNV characteristics. Greater NVA in proportion to LS was associated with higher amounts of SRF and PED. The correlation between these parameters may represent MNV maturation and can be used as a biomarker for resolution of disease activity. AI-based OCT analysis allows for a deeper understanding of neovascular disease in AMD and the potential to adjust therapeutic strategies to optimize outcomes through precision medicine.


Assuntos
Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Feminino , Masculino , Idoso , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/patologia , Idoso de 80 Anos ou mais , Inteligência Artificial , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/uso terapêutico , Angiofluoresceinografia/métodos , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/patologia , Degeneração Macular Exsudativa/diagnóstico por imagem , Degeneração Macular Exsudativa/tratamento farmacológico , Aprendizado Profundo
15.
Am J Ophthalmol ; 264: 53-65, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38428557

RESUMO

PURPOSE: To investigate differences in volume and distribution of the main exudative biomarkers across all types and subtypes of macular neovascularization (MNV) using artificial intelligence (AI). DESIGN: Cross-sectional study. METHODS: An AI-based analysis was conducted on 34,528 OCT B-scans consisting of 281 (250 unifocal, 31 multifocal) MNV3, 55 MNV2, and 121 (30 polypoidal, 91 non-polypoidal) MNV1 treatment-naive eyes. Means (SDs), medians and heat maps of cystic intraretinal fluid (IRF), subretinal fluid (SRF), pigment epithelial detachments (PED), and hyperreflective foci (HRF) volumes, as well as retinal thickness (RT) were compared among MNV types and subtypes. RESULTS: MNV3 had the highest mean IRF with 291 (290) nL, RT with 357 (49) µm, and HRF with 80 (70) nL, P ≤ .05. MNV1 showed the greatest mean SRF with 492 (586) nL, whereas MNV3 exhibited the lowest with 218 (382) nL, P ≤ .05. Heat maps showed IRF confined to the center, whereas SRF was scattered in all types. SRF, HRF, and PED were more distributed in the temporal macular half in MNV3. Means of IRF, HRF, and PED were higher in the multifocal than in the unifocal MNV3 with 416 (309) nL,114 (95) nL, and 810 (850) nL, P ≤ .05. Compared to the non-polypoidal subtype, the polypoidal subtype had greater means of SRF with 695 (718) nL, HRF 69 (63) nL, RT 357 (45) µm, and PED 1115 (1170) nL, P ≤ .05. CONCLUSIONS: This novel quantitative AI analysis shows that SRF is a biomarker of choroidal origin in MNV1, whereas IRF, HRF, and RT are retinal biomarkers in MNV3. Polypoidal MNV1 and multifocal MNV3 present with higher exudation compared to other subtypes.


Assuntos
Biomarcadores , Líquido Sub-Retiniano , Tomografia de Coerência Óptica , Degeneração Macular Exsudativa , Humanos , Estudos Transversais , Tomografia de Coerência Óptica/métodos , Degeneração Macular Exsudativa/diagnóstico , Degeneração Macular Exsudativa/metabolismo , Feminino , Masculino , Biomarcadores/metabolismo , Líquido Sub-Retiniano/metabolismo , Idoso , Idoso de 80 Anos ou mais , Angiofluoresceinografia/métodos , Inteligência Artificial , Acuidade Visual/fisiologia
16.
Med Image Anal ; 93: 103104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350222

RESUMO

Automated lesion detection in retinal optical coherence tomography (OCT) scans has shown promise for several clinical applications, including diagnosis, monitoring and guidance of treatment decisions. However, segmentation models still struggle to achieve the desired results for some complex lesions or datasets that commonly occur in real-world, e.g. due to variability of lesion phenotypes, image quality or disease appearance. While several techniques have been proposed to improve them, one line of research that has not yet been investigated is the incorporation of additional semantic context through the application of anomaly detection models. In this study we experimentally show that incorporating weak anomaly labels to standard segmentation models consistently improves lesion segmentation results. This can be done relatively easy by detecting anomalies with a separate model and then adding these output masks as an extra class for training the segmentation model. This provides additional semantic context without requiring extra manual labels. We empirically validated this strategy using two in-house and two publicly available retinal OCT datasets for multiple lesion targets, demonstrating the potential of this generic anomaly guided segmentation approach to be used as an extra tool for improving lesion detection models.


Assuntos
Semântica , Tomografia de Coerência Óptica , Humanos , Fenótipo , Retina/diagnóstico por imagem
17.
Int J Retina Vitreous ; 10(1): 31, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589936

RESUMO

Artificial intelligence (AI) has emerged as a transformative technology across various fields, and its applications in the medical domain, particularly in ophthalmology, has gained significant attention. The vast amount of high-resolution image data, such as optical coherence tomography (OCT) images, has been a driving force behind AI growth in this field. Age-related macular degeneration (AMD) is one of the leading causes for blindness in the world, affecting approximately 196 million people worldwide in 2020. Multimodal imaging has been for a long time the gold standard for diagnosing patients with AMD, however, currently treatment and follow-up in routine disease management are mainly driven by OCT imaging. AI-based algorithms have by their precision, reproducibility and speed, the potential to reliably quantify biomarkers, predict disease progression and assist treatment decisions in clinical routine as well as academic studies. This review paper aims to provide a summary of the current state of AI in AMD, focusing on its applications, challenges, and prospects.

18.
Ophthalmol Sci ; 4(4): 100466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591046

RESUMO

Objective: To identify the individual progression of geographic atrophy (GA) lesions from baseline OCT images of patients in routine clinical care. Design: Clinical evaluation of a deep learning-based algorithm. Subjects: One hundred eighty-four eyes of 100 consecutively enrolled patients. Methods: OCT and fundus autofluorescence (FAF) images (both Spectralis, Heidelberg Engineering) of patients with GA secondary to age-related macular degeneration in routine clinical care were used for model validation. Fundus autofluorescence images were annotated manually by delineating the GA area by certified readers of the Vienna Reading Center. The annotated FAF images were anatomically registered in an automated manner to the corresponding OCT scans, resulting in 2-dimensional en face OCT annotations, which were taken as a reference for the model performance. A deep learning-based method for modeling the GA lesion growth over time from a single baseline OCT was evaluated. In addition, the ability of the algorithm to identify fast progressors for the top 10%, 15%, and 20% of GA growth rates was analyzed. Main Outcome Measures: Dice similarity coefficient (DSC) and mean absolute error (MAE) between manual and predicted GA growth. Results: The deep learning-based tool was able to reliably identify disease activity in GA using a standard OCT image taken at a single baseline time point. The mean DSC for the total GA region increased for the first 2 years of prediction (0.80-0.82). With increasing time intervals beyond 3 years, the DSC decreased slightly to a mean of 0.70. The MAE was low over the first year and with advancing time slowly increased, with mean values ranging from 0.25 mm to 0.69 mm for the total GA region prediction. The model achieved an area under the curve of 0.81, 0.79, and 0.77 for the identification of the top 10%, 15%, and 20% growth rates, respectively. Conclusions: The proposed algorithm is capable of fully automated GA lesion growth prediction from a single baseline OCT in a time-continuous fashion in the form of en face maps. The results are a promising step toward clinical decision support tools for therapeutic dosing and guidance of patient management because the first treatment for GA has recently become available. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

19.
Transl Vis Sci Technol ; 13(6): 7, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38874975

RESUMO

Purpose: The subsidence of the outer plexiform layer (OPL) is an important imaging biomarker on optical coherence tomography (OCT) associated with early outer retinal atrophy and a risk factor for progression to geographic atrophy in patients with intermediate age-related macular degeneration (AMD). Deep neural networks (DNNs) for OCT can support automated detection and localization of this biomarker. Methods: The method predicts potential OPL subsidence locations on retinal OCTs. A detection module (DM) infers bounding boxes around subsidences with a likelihood score, and a classification module (CM) assesses subsidence presence at the B-scan level. Overlapping boxes between B-scans are combined and scored by the product of the DM and CM predictions. The volume-wise score is the maximum prediction across all B-scans. One development and one independent external data set were used with 140 and 26 patients with AMD, respectively. Results: The system detected more than 85% of OPL subsidences with less than one false-positive (FP)/scan. The average area under the curve was 0.94 ± 0.03 for volume-level detection. Similar or better performance was achieved on the independent external data set. Conclusions: DNN systems can efficiently perform automated retinal layer subsidence detection in retinal OCT images. In particular, the proposed DNN system detects OPL subsidence with high sensitivity and a very limited number of FP detections. Translational Relevance: DNNs enable objective identification of early signs associated with high risk of progression to the atrophic late stage of AMD, ideally suited for screening and assessing the efficacy of the interventions aiming to slow disease progression.


Assuntos
Degeneração Macular , Redes Neurais de Computação , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Idoso , Feminino , Masculino , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/diagnóstico , Degeneração Macular/patologia , Atrofia Geográfica/diagnóstico por imagem , Atrofia Geográfica/diagnóstico , Progressão da Doença , Retina/diagnóstico por imagem , Retina/patologia , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
20.
Invest Ophthalmol Vis Sci ; 65(8): 30, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028907

RESUMO

Purpose: Investigating the sequence of morphological changes preceding outer plexiform layer (OPL) subsidence, a marker preceding geographic atrophy, in intermediate AMD (iAMD) using high-precision artificial intelligence (AI) quantifications on optical coherence tomography imaging. Methods: In this longitudinal observational study, individuals with bilateral iAMD participating in a multicenter clinical trial were screened for OPL subsidence and RPE and outer retinal atrophy. OPL subsidence was segmented on an A-scan basis in optical coherence tomography volumes, obtained 6-monthly with 36 months follow-up. AI-based quantification of photoreceptor (PR) and outer nuclear layer (ONL) thickness, drusen height and choroidal hypertransmission (HT) was performed. Changes were compared between topographic areas of OPL subsidence (AS), drusen (AD), and reference (AR). Results: Of 280 eyes of 140 individuals, OPL subsidence occurred in 53 eyes from 43 individuals. Thirty-six eyes developed RPE and outer retinal atrophy subsequently. In the cohort of 53 eyes showing OPL subsidence, PR and ONL thicknesses were significantly decreased in AS compared with AD and AR 12 and 18 months before OPL subsidence occurred, respectively (PR: 20 µm vs. 23 µm and 27 µm [P < 0.009]; ONL, 84 µm vs. 94 µm and 98 µm [P < 0.008]). Accelerated thinning of PR (0.6 µm/month; P < 0.001) and ONL (0.8 µm/month; P < 0.001) was observed in AS compared with AD and AR. Concomitant drusen regression and hypertransmission increase at the occurrence of OPL subsidence underline the atrophic progress in areas affected by OPL subsidence. Conclusions: PR and ONL thinning are early subclinical features associated with subsequent OPL subsidence, an indicator of progression toward geographic atrophy. AI algorithms are able to predict and quantify morphological precursors of iAMD conversion and allow personalized risk stratification.


Assuntos
Aprendizado Profundo , Atrofia Geográfica , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Feminino , Masculino , Idoso , Atrofia Geográfica/diagnóstico , Pessoa de Meia-Idade , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Seguimentos , Progressão da Doença , Idoso de 80 Anos ou mais , Drusas Retinianas/diagnóstico , Atrofia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA