Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 166(1): 88-101, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27293190

RESUMO

Antibodies to DNA and chromatin drive autoimmunity in systemic lupus erythematosus (SLE). Null mutations and hypomorphic variants of the secreted deoxyribonuclease DNASE1L3 are linked to familial and sporadic SLE, respectively. We report that DNASE1L3-deficient mice rapidly develop autoantibodies to DNA and chromatin, followed by an SLE-like disease. Circulating DNASE1L3 is produced by dendritic cells and macrophages, and its levels inversely correlate with anti-DNA antibody response. DNASE1L3 is uniquely capable of digesting chromatin in microparticles released from apoptotic cells. Accordingly, DNASE1L3-deficient mice and human patients have elevated DNA levels in plasma, particularly in circulating microparticles. Murine and human autoantibody clones and serum antibodies from human SLE patients bind to DNASE1L3-sensitive chromatin on the surface of microparticles. Thus, extracellular microparticle-associated chromatin is a potential self-antigen normally digested by circulating DNASE1L3. The loss of this tolerance mechanism can contribute to SLE, and its restoration may represent a therapeutic opportunity in the disease.


Assuntos
Autoanticorpos/imunologia , Micropartículas Derivadas de Células/química , Cromatina/imunologia , DNA/imunologia , Endodesoxirribonucleases/genética , Lúpus Eritematoso Sistêmico/imunologia , Animais , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/metabolismo , Humanos , Células Jurkat , Lúpus Eritematoso Sistêmico/enzimologia , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Immunity ; 54(12): 2698-2700, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910939

RESUMO

The gut houses one of the largest populations of glia in the nervous system, yet their essential functions remain unclear. New work by Progatzky et al. (2021) in Nature reveals that these enteric glia orchestrate an IFNγ-dependent immune response to helminth infection that promotes tissue repair.


Assuntos
Intestino Delgado , Neuroglia
3.
Cell ; 158(2): 300-313, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036630

RESUMO

Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK:


Assuntos
Motilidade Gastrointestinal , Trato Gastrointestinal/citologia , Trato Gastrointestinal/microbiologia , Macrófagos/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiologia , Técnicas In Vitro , Fator Estimulador de Colônias de Macrófagos , Camundongos , Neurônios/metabolismo , Peristaltismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais
4.
Immunity ; 45(2): 238-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533011

RESUMO

Type 3 innate lymphoid cells (ILC3s) and enteric glia, an essential structural component of gut innervation, are well-known regulators of intestinal homeostasis. Ibiza et al. (2016) uncover a new link between commensal bacteria, enteric glial cells, and ILC3s that is required for intestinal homeostasis and defense.


Assuntos
Disbiose/genética , Microbioma Gastrointestinal/imunologia , Imunidade Inata , Intestinos/imunologia , Linfócitos/imunologia , Neuroglia/imunologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Técnicas de Silenciamento de Genes , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/metabolismo , Homeostase , Humanos , Interleucinas/metabolismo , Intestinos/inervação , Camundongos , Neuroglia/microbiologia , Proteínas Proto-Oncogênicas c-ret/genética , Simbiose , Interleucina 22
5.
Nat Immunol ; 13(9): 888-99, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22797772

RESUMO

Although much progress has been made in the understanding of the ontogeny and function of dendritic cells (DCs), the transcriptional regulation of the lineage commitment and functional specialization of DCs in vivo remains poorly understood. We made a comprehensive comparative analysis of CD8(+), CD103(+), CD11b(+) and plasmacytoid DC subsets, as well as macrophage DC precursors and common DC precursors, across the entire immune system. Here we characterized candidate transcriptional activators involved in the commitment of myeloid progenitor cells to the DC lineage and predicted regulators of DC functional diversity in tissues. We identified a molecular signature that distinguished tissue DCs from macrophages. We also identified a transcriptional program expressed specifically during the steady-state migration of tissue DCs to the draining lymph nodes that may control tolerance to self tissue antigens.


Assuntos
Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células Dendríticas/imunologia , Transcrição Gênica , Diferenciação Celular/genética , Células Dendríticas/citologia , Perfilação da Expressão Gênica , Humanos
7.
Trends Immunol ; 41(5): 359-362, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249062

RESUMO

There is a major gap in our understanding of how the intestinal immune and nervous systems are integrated to regulate protective adaptations to enteric infections while maintaining tissue homeostasis. Three recent complementary reports published in Cell (2020) provide new mechanistic insights into how this enteric neuro-immune crosstalk may occur.


Assuntos
Homeostase , Enteropatias , Intestinos , Sistema Nervoso , Animais , Homeostase/imunologia , Humanos , Enteropatias/imunologia , Enteropatias/microbiologia , Intestinos/imunologia , Sistema Nervoso/imunologia
8.
Immunity ; 36(6): 1031-46, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22749353

RESUMO

GM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103(+) DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103(+) and CD11b(+) DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8(+) T cell immunity after immunization with particulate antigens. In contrast, Csf-2 receptor was dispensable for the differentiation and innate function of inflammatory DCs during acute injuries. Instead, inflammatory DCs required Csf-1 receptor for their development. Thus, Csf-2 is important in vaccine-induced CD8(+) T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/fisiologia , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Inflamação/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Linhagem da Célula , Subunidade beta Comum dos Receptores de Citocinas/antagonistas & inibidores , Subunidade beta Comum dos Receptores de Citocinas/deficiência , Subunidade beta Comum dos Receptores de Citocinas/genética , Células Dendríticas/classificação , Células Dendríticas/citologia , Encefalomielite Autoimune Experimental/imunologia , Endotoxemia/imunologia , Perfilação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/deficiência , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Homeostase , Lipopolissacarídeos/toxicidade , Listeriose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/transplante , Especificidade de Órgãos , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Quimera por Radiação , Baço/imunologia , Tamoxifeno/farmacologia
9.
Immunity ; 35(5): 780-91, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22018469

RESUMO

Dendritic cells (DCs) in tissues and lymphoid organs comprise distinct functional subsets that differentiate in situ from circulating progenitors. Tissue-specific signals that regulate DC subset differentiation are poorly understood. We report that DC-specific deletion of the Notch2 receptor caused a reduction of DC populations in the spleen. Within the splenic CD11b(+) DC subset, Notch signaling blockade ablated a distinct population marked by high expression of the adhesion molecule Esam. The Notch-dependent Esam(hi) DC subset required lymphotoxin beta receptor signaling, proliferated in situ, and facilitated CD4(+) T cell priming. The Notch-independent Esam(lo) DCs expressed monocyte-related genes and showed superior cytokine responses. In addition, Notch2 deletion led to the loss of CD11b(+)CD103(+) DCs in the intestinal lamina propria and to a corresponding decrease of IL-17-producing CD4(+) T cells in the intestine. Thus, Notch2 is a common differentiation signal for T cell-priming CD11b(+) DC subsets in the spleen and intestine.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Intestinos/imunologia , Receptor Notch2/metabolismo , Transdução de Sinais , Baço/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Baço/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
10.
Proc Natl Acad Sci U S A ; 114(18): E3709-E3718, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420791

RESUMO

According to current dogma, there is little or no ongoing neurogenesis in the fully developed adult enteric nervous system. This lack of neurogenesis leaves unanswered the question of how enteric neuronal populations are maintained in adult guts, given previous reports of ongoing neuronal death. Here, we confirm that despite ongoing neuronal cell loss because of apoptosis in the myenteric ganglia of the adult small intestine, total myenteric neuronal numbers remain constant. This observed neuronal homeostasis is maintained by new neurons formed in vivo from dividing precursor cells that are located within myenteric ganglia and express both Nestin and p75NTR, but not the pan-glial marker Sox10. Mutation of the phosphatase and tensin homolog gene in this pool of adult precursors leads to an increase in enteric neuronal number, resulting in ganglioneuromatosis, modeling the corresponding disorder in humans. Taken together, our results show significant turnover and neurogenesis of adult enteric neurons and provide a paradigm for understanding the enteric nervous system in health and disease.


Assuntos
Apoptose , Sistema Nervoso Entérico/metabolismo , Nestina/metabolismo , Neurogênese , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Transcrição SOXE/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Nestina/genética , Receptores de Fator de Crescimento Neural/genética , Fatores de Transcrição SOXE/genética
11.
J Neurosci ; 38(44): 9346-9354, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381426

RESUMO

The enteric nervous system (ENS) is a large, complex division of the peripheral nervous system that regulates many digestive, immune, hormonal, and metabolic functions. Recent advances have elucidated the dynamic nature of the mature ENS, as well as the complex, bidirectional interactions among enteric neurons, glia, and the many other cell types that are important for mediating gut behaviors. Here, we provide an overview of ENS development and maintenance, and focus on the latest insights gained from the use of novel model systems and live-imaging techniques. We discuss major advances in the understanding of enteric glia, and the functional interactions among enteric neurons, glia, and enteroendocrine cells, a large class of sensory epithelial cells. We conclude by highlighting recent work on muscularis macrophages, a group of immune cells that closely interact with the ENS in the gut wall, and the importance of neurological-immune system communication in digestive health and disease.


Assuntos
Encéfalo/metabolismo , Sistema Nervoso Entérico/metabolismo , Gastroenteropatias/metabolismo , Trato Gastrointestinal/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/patologia , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/patologia , Gastroenteropatias/imunologia , Gastroenteropatias/patologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/patologia , Humanos , Neurobiologia
12.
Trends Immunol ; 37(7): 487-501, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27289177

RESUMO

The gastrointestinal (GI) tract is the largest immune organ; in vertebrates, it is the only organ whose function is controlled by its own intrinsic enteric nervous system (ENS), but it is additionally regulated by extrinsic (sympathetic and parasympathetic) innervation. The GI nervous and immune systems are highly integrated in their common goal, which is to unite digestive functions with protection from ingested environmental threats. This review discusses the physiological relevance of enteric neuroimmune integration by summarizing the current knowledge of evolutionary and developmental pathways, cellular organization, and molecular mechanisms of neuroimmune interactions in health and disease.


Assuntos
Trato Gastrointestinal/imunologia , Sistema Imunitário , Imunidade nas Mucosas , Sistema Nervoso , Neuroimunomodulação , Animais , Evolução Biológica , Trato Gastrointestinal/inervação , Homeostase , Humanos , Tolerância Imunológica
13.
Immunity ; 33(4): 597-606, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20933441

RESUMO

Dendritic cells (DCs) comprise distinct functional subsets including CD8⁻ and CD8(+) classical DCs (cDCs) and interferon-secreting plasmacytoid DCs (pDCs). The cytokine Flt3 ligand (Flt3L) controls the development of DCs and is particularly important for the pDC and CD8(+) cDC and their CD103(+) tissue counterparts. We report that mammalian target of rapamycin (mTOR) inhibitor rapamycin impaired Flt3L-driven DC development in vitro, with the pDCs and CD8(+)-like cDCs most profoundly affected. Conversely, deletion of the phosphoinositide 3-kinase (PI3K)-mTOR negative regulator Pten facilitated Flt3L-driven DC development in culture. DC-specific Pten targeting in vivo caused the expansion of CD8(+) and CD103(+) cDC numbers, which was reversible by rapamycin. The increased CD8(+) cDC numbers caused by Pten deletion correlated with increased susceptibility to the intracellular pathogen Listeria. Thus, PI3K-mTOR signaling downstream of Flt3L controls DC development, and its restriction by Pten ensures optimal DC pool size and subset composition.


Assuntos
Células Dendríticas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Antígenos CD/análise , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cadeias alfa de Integrinas/análise , Listeriose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
14.
Immunity ; 31(3): 513-25, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19733489

RESUMO

CX(3)CR1(+) and CD103(+) dendritic cells (DCs) in intestinal lamina propria play a key role in mucosal immunity. However, the origin and the developmental pathways that regulate their differentiation in the lamina propria remain unclear. We showed that monocytes gave rise exclusively to CD103(-)CX(3)CR1(+) lamina propria DCs under the control of macrophage-colony-stimulating factor receptor (M-CSFR) and Fms-like thyrosine kinase 3 (Flt3) ligands. In contrast, common DC progenitors (CDP) and pre-DCs, which give rise to lymphoid organ DCs but not to monocytes, differentiated exclusively into CD103(+)CX(3)CR1(-) lamina propria DCs under the control of Flt3 and granulocyte-macrophage-colony-stimulating factor receptor (GM-CSFR) ligands. CD103(+)CX(3)CR1(-) DCs but not CD103(-)CX(3)CR1(+) DCs in the lamina propria constitutively expressed CCR7 and were the first DCs to transport pathogenic Salmonella from the intestinal tract to the mesenteric lymph nodes. Altogether, these results underline the diverse origin of the lamina propria DC network and identify mucosal DCs that arise from pre-DCs as key sentinels of the gut immune system.


Assuntos
Linhagem da Célula , Células Dendríticas/citologia , Células Dendríticas/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Animais , Antígenos CD/imunologia , Receptor 1 de Quimiocina CX3C , Diferenciação Celular , Movimento Celular , Cadeias alfa de Integrinas/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Knockout , Fenótipo , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Receptores de Quimiocinas/imunologia , Salmonella/imunologia , Salmonella/patogenicidade , Tirosina Quinase 3 Semelhante a fms/deficiência , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/imunologia
15.
J Immunol ; 189(5): 2614-24, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855714

RESUMO

Although peroxisome proliferator-activated receptor γ (PPARγ) has anti-inflammatory actions in macrophages, which macrophage populations express PPARγ in vivo and how it regulates tissue homeostasis in the steady state and during inflammation remains unclear. We now show that lung and spleen macrophages selectively expressed PPARγ among resting tissue macrophages. In addition, Ly-6C(hi) monocytes recruited to an inflammatory site induced PPARγ as they differentiated to macrophages. When PPARγ was absent in Ly-6C(hi)-derived inflammatory macrophages, initiation of the inflammatory response was unaffected, but full resolution of inflammation failed, leading to chronic leukocyte recruitment. Conversely, PPARγ activation favored resolution of inflammation in a macrophage PPARγ-dependent manner. In the steady state, PPARγ deficiency in red pulp macrophages did not induce overt inflammation in the spleen. By contrast, PPARγ deletion in lung macrophages induced mild pulmonary inflammation at the steady state and surprisingly precipitated mortality upon infection with Streptococcus pneumoniae. This accelerated mortality was associated with impaired bacterial clearance and inability to sustain macrophages locally. Overall, we uncovered critical roles for macrophage PPARγ in promoting resolution of inflammation and maintaining functionality in lung macrophages where it plays a pivotal role in supporting pulmonary host defense. In addition, this work identifies specific macrophage populations as potential targets for the anti-inflammatory actions of PPARγ agonists.


Assuntos
Resistência à Doença/imunologia , Mediadores da Inflamação/fisiologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , PPAR gama/fisiologia , Animais , Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/uso terapêutico , Pulmão/microbiologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , PPAR gama/biossíntese , PPAR gama/deficiência , Streptococcus pneumoniae/imunologia
16.
Immunol Rev ; 234(1): 55-75, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20193012

RESUMO

Dendritic cells (DCs) have been extensively studied in mice lymphoid organs, but less is known about the origin and the mechanisms that regulate DC development and function in non-lymphoid tissues. Here, we discuss recent evidence establishing the contribution of the DC-restricted lineage to the non-lymphoid tissue DC pool and discuss the mechanisms that control the homeostasis of non-lymphoid tissue DCs. We also review recent results underlining the functional specialization of tissue DCs and discuss the potential implications of these findings in tissue immunity and in the development of novel vaccine strategies.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células Dendríticas/imunologia , Células-Tronco Hematopoéticas/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Citocinas/imunologia , Células Dendríticas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Mediadores da Inflamação/imunologia , Camundongos , Fenótipo , Fatores de Transcrição/metabolismo , Vacinas/imunologia
17.
bioRxiv ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39211236

RESUMO

Transcription factors TFEB and TFE3 are crucial for regulating autophagy, lysosomal biogenesis, and lipid metabolism, and have significant roles in macrophage function and innate immunity. The alpha7 nicotinic acetylcholine receptor (α7nAChR), a ligand-gated Ca 2+ channel known for its therapeutic potential in neurological and inflammatory disorders, has been implicated in modulating immune responses by modulating macrophage function. Stimulation of α7nAChR with chemical agonists has been claimed to activate TFEB in pancreatic acinar cells and neurons. However, the impact of α7nAChR activation on TFEB and TFE3 in macrophages remained unknown, posing an important question due to the potential implications for inflammation regulation. This study investigates the effects of acute α7nAChR activation on TFEB-mediated responses in murine macrophages using the specific agonist PNU-282987. We demonstrate that α7nAChR stimulation triggers TFEB nuclear translocation and lysosomal expansion. Surprisingly, PNU-282987 induces a broad pro-inflammatory gene signature without concomitant cytokine secretion, suggesting an uncoupling of gene expression from cytokine release. Mechanistically, TFEB activation requires the lysosomal Ca 2+ exporter MCOLN1 and the Ca 2+ -dependent phosphatase PPP3/calcineurin. Additionally, PNU-282987 elevates reactive oxygen species (ROS) levels, and ROS are involved in TFEB activation by PNU-282987. Notably, even with α7nAChR deletion, compensatory ROS-mediated TFEB activation persists, suggesting the involvement of additional nicotinic receptors. Our findings reveal a novel α7nAChR-TFEB signaling axis in macrophages, offer new insights into the cholinergic regulation of immune responses, establish a baseline for comparison with disease states, and identify potential therapeutic targets for modulating inflammation.

18.
J Exp Med ; 203(12): 2627-38, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17116734

RESUMO

In this study, we explored dermal dendritic cell (DC) homeostasis in mice and humans both in the steady state and after hematopoietic cell transplantation. We discovered that dermal DCs proliferate in situ in mice and human quiescent dermis. In parabiotic mice with separate organs but shared blood circulation, the majority of dermal DCs failed to be replaced by circulating precursors for >6 mo. In lethally irradiated mice injected with donor congenic bone marrow (BM) cells, a subset of recipient DCs remained in the dermis and proliferated locally throughout life. Consistent with these findings, a large proportion of recipient dermal DCs remained in patients' skin after allogeneic hematopoietic cell transplantation, despite complete donor BM chimerism. Collectively, our results oppose the traditional view that DCs are nondividing terminally differentiated cells maintained by circulating precursors and support the new paradigm that tissue DCs have local proliferative properties that control their homeostasis in the steady state. Given the role of residual host tissue DCs in transplant immune reactions, these results suggest that dermal DC homeostasis may contribute to the development of cutaneous graft-versus-host disease in clinical transplantation.


Assuntos
Ciclo Celular/imunologia , Células Dendríticas/classificação , Células Dendríticas/efeitos da radiação , Quimera por Radiação , Pele/citologia , Pele/imunologia , Doença Aguda , Animais , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/patologia , Ciclo Celular/genética , Proliferação de Células , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Quimera por Radiação/genética , Quimera por Radiação/imunologia , Pele/patologia
19.
Curr Opin Immunol ; 68: 64-71, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130386

RESUMO

The gastrointestinal (GI) tract performs a set of vital physiological functions related to food and water consumption. To help regulate these complex physiological processes, the GI tract is innervated by extensive neural networks. The GI tract also serves as the largest immune organ aimed to protect hosts from harmful microbes and toxins ingested with food. It emerges that the enteric nervous and immune systems are highly integrated to optimize digestion while reinforcing immune protection. In this review, we will discuss key cellular players involved in the neuro-immune interactions within the GI mucosa with the focus on the recently uncovered neural pathways that regulate mucosal immunity in a context relevant to GI health and disease.


Assuntos
Microbioma Gastrointestinal/imunologia , Neuroimunomodulação/imunologia , Animais , Trato Gastrointestinal/imunologia , Humanos
20.
Gastroenterology ; 137(3): 1006-18, 1018.e1-3, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19501588

RESUMO

BACKGROUND & AIMS: Chemokines are small proteins that direct leukocyte trafficking under homeostatic and inflammatory conditions. We analyzed the differential expression of chemokines in distinct segments of the intestine and investigated the importance of chemokines for the distribution of leukocytes in the intestine during homeostatic and inflammatory conditions. METHODS: We analyzed messenger RNA for all known chemokines in different segments of the gut by quantitative polymerase chain reaction. To study the effect of multiple-chemokine blockade in the gut, we generated transgenic mice that expressed the chemokine binding protein M3 in the intestine (V-M3 mice). We used flow cytometry to evaluate the changes in the numbers of leukocytes. RESULTS: We observed distinct chemokine expression profiles in the 6 segments of the gut. Some chemokines were expressed throughout the intestine (CCL28, CCL6, CXCL16, and CX3CL1), whereas others were expressed preferentially in the small (CCL25 and CCL5) or large intestine (CCL19, CCL21, and CXCL5). Expression of the chemokine blocker M3 in intestinal epithelial cells resulted in reduced numbers of B and T cells in Peyer's patches, reduced numbers of intraepithelial CD8alphabeta(+)/TCRalphabeta(+) and CD8alphaalpha(+)/TCRalphabeta(+) T cells, and reduced numbers of lamina propria CD8(+) T cells. Strikingly, M3 expression markedly reduced the number of eosinophils and macrophages in the small and large intestines. Dextran sulfate sodium treatment of control mice led to marked changes in the expression of chemokines and in the number of myeloid cells in the colon. These cellular changes were significantly attenuated in the presence of M3. CONCLUSIONS: Our study reveals a complex pattern of chemokine expression in the intestine and indicates that chemokines are critical for leukocyte accumulation in the intestine during homeostasis and inflammation.


Assuntos
Quimiocinas/metabolismo , Intestinos/imunologia , Subpopulações de Linfócitos , Receptores de Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Animais , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Transgênicos , Nódulos Linfáticos Agregados/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA